期刊论文详细信息
Epigenetics & Chromatin
Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture
Job Dekker1 
[1] Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester MA 01605-0103, USA
关键词: Nucleus;    Mitotic chromosome;    Epigenetic inheritance;    Chromosome folding;    Chromosome conformation capture;    Chromatin looping;   
Others  :  1120471
DOI  :  10.1186/1756-8935-7-25
 received in 2014-05-07, accepted in 2014-10-15,  发布年份 2014
PDF
【 摘 要 】

Genetic and epigenetic inheritance through mitosis is critical for dividing cells to maintain their state. This process occurs in the context of large-scale re-organization of chromosome conformation during prophase leading to the formation of mitotic chromosomes, and during the reformation of the interphase nucleus during telophase and early G1. This review highlights how recent studies over the last 5 years employing chromosome conformation capture combined with classical models of chromosome organization based on decades of microscopic observations, are providing new insights into the three-dimensional organization of chromatin inside the interphase nucleus and within mitotic chromosomes. One striking observation is that interphase genome organization displays cell type-specific features that are related to cell type-specific gene expression, whereas mitotic chromosome folding appears universal and tissue invariant. This raises the question of whether or not there is a need for an epigenetic memory for genome folding. Herein, the two different folding states of mammalian genomes are reviewed and then models are discussed wherein instructions for cell type-specific genome folding are locally encoded in the linear genome and transmitted through mitosis, e.g., as open chromatin sites with or without continuous binding of transcription factors. In the next cell cycle these instructions are used to re-assemble protein complexes on regulatory elements which then drive three-dimensional folding of the genome from the bottom up through local action and self-assembly into higher order levels of cell type-specific organization. In this model, no explicit epigenetic memory for cell type-specific chromosome folding is required.

【 授权许可】

   
2014 Dekker; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150210033149650.pdf 594KB PDF download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Cremer T, Cremer C: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001, 2(3):292-301.
  • [2]Gasser SM: Positions of potential: nuclear organization and gene expression. Cell 2001, 104:639-642.
  • [3]Gilbert N, Gilchrist S, Bickmore WA: Chromatin organization in the mammalian nucleus. Int Rev Cytol 2005, 242:283-336.
  • [4]Misteli T: Beyond the sequence: cellular organization of genome function. Cell 2007, 128(4):787-800.
  • [5]Bickmore WA, van Steensel B: Genome architecture: domain organization of interphase chromosomes. Cell 2013, 152(6):1270-1284.
  • [6]Gibcus JH, Dekker J: The hierarchy of the 3D genome. Mol Cell 2013, 49(5):773-782.
  • [7]Belmont AS: Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr Opin Cell Biol 2014, 26:69-78.
  • [8]Bickmore WA: The spatial organization of the human genome. Annu Rev Genomics Hum Genet 2013, 14:67-84.
  • [9]Fraser P, Bickmore W: Nuclear organization of the genome and the potential for gene regulation. Nature 2007, 447(7143):413-417.
  • [10]Misteli T: Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 2000, 113(Pt 11):1841-1849.
  • [11]Sexton T, Schober H, Fraser P, Gasser SM: Gene regulation through nuclear organization. Nat Struct Mol Biol 2007, 14(11):1049-1055.
  • [12]Taddei A, Hediger F, Neumann FR, Gasser SM: The function of nuclear architecture: a genetic approach. Annu Rev Genet 2004, 38:305-345.
  • [13]Nagai S, Heun P, Gasser SM: Roles for nuclear organization in the maintenance of genome stability. Epigenomics 2010, 2(2):289-305.
  • [14]Misteli T, Soutoglou E: The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 2009, 10(4):243-254.
  • [15]Belmont AS: Mitotic chromosome structure and condensation. Curr Opin Cell Biol 2006, 18(6):632-638.
  • [16]Moser SC, Swedlow JR: How to be a mitotic chromosome. Chromosome Res 2011, 19(3):307-319.
  • [17]Maeshima K, Eltsov M: Packaging the genome: the structure of mitotic chromosomes. J Biochem 2008, 143(2):145-153.
  • [18]Swedlow JR, Hirano T: The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 2003, 11(3):557-569.
  • [19]Flemming W: Zur Kenntniss Zelle und ihrer Theilungs-Erscheinungen. Schriften des Naturwissenschaftlichen Vereins fur Schlewig-Holstein 1878, 3:23-27.
  • [20]Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007, 39(3):311-318.
  • [21]Bulger M, Groudine M: Functional and mechanistic diversity of distal transcription enhancers. Cell 2011, 144(3):327-339.
  • [22]ENCODE-Project-Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
  • [23]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2010, 459(7243):108-112.
  • [24]Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, Vernot B, Cheng JB, Thurman RE, Sandstrom R, Haugen E, Heimfeld S, Murry CE, Akey JM, Stamatoyannopoulos JA: Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 2013, 154(4):888-903.
  • [25]Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE: Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013, 152(3):642-654.
  • [26]Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W: Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 2002, 10(6):1453-1465.
  • [27]Sanyal A, Lajoie BR, Jain G, Dekker J: The long-range interaction landscape of gene promoters. Nature 2012, 489(7414):109-113.
  • [28]van de Werken HJ, Landan G, Holwerda SJ, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Oz Y, Bouwman BA, Verstegen MJ, de Wit E, Tanay A, de Laat W: Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 2012, 9(10):969-972.
  • [29]Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA: Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012, 149(6):1233-1244.
  • [30]de Laat W, Duboule D: Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013, 502(7472):499-506.
  • [31]Zaidi SK, Young DW, Montecino MA, Lian JB, van Wijnen AJ, Stein JL, Stein GS: Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 2010, 11(8):583-589.
  • [32]Martínez-Balbás MA, Dey A, Rabindran SK, Ozato K, Wu C: Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 1995, 83(1):29-38.
  • [33]Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J: Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 2013, 154(4):801-813.
  • [34]Kadauke S, Udugama MI, Pawlicki JM, Achtman JC, Jain DP, Cheng Y, Hardison RC, Blobel GA: Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell 2012, 150(4):725-737.
  • [35]Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS: Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 2013, 27(3):251-260.
  • [36]Kosak ST, Groudine M: Gene order and dynamic domains. Science 2004, 306(5696):644-647.
  • [37]Pombo A, Branco MR: Functional organisation of the genome during interphase. Curr Opin Genet Dev 2007, 17(5):451-455.
  • [38]Cook PR: A model for all genomes: the role of transcription factories. J Mol Biol 2010, 395(1):1-10.
  • [39]de Wit E, de Laat W: A decade of 3C technologies: insights into nuclear organization. Genes Dev 2012, 26(1):11-24.
  • [40]Hakim O, Misteli T: SnapShot: chromosome conformation capture. Cell 2012, 148(5):1068.e2.
  • [41]Dekker J, Marti-Renom MA, Mirny LA: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013, 14(6):390-403.
  • [42]Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA: Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 1999, 145(6):1119-1131.
  • [43]Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA: The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 2001, 10(3):211-219.
  • [44]Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA: Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res 2011, 19(7):901-909.
  • [45]Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T: Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 2002, 99(7):4424-4429.
  • [46]Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 2005, 3(5):e157.
  • [47]Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T: Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 2001, 9(7):541-567.
  • [48]Branco MR, Pombo A: Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 2006, 4(5):e138.
  • [49]Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 2006, 38(11):1348-1354.
  • [50]Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326(5950):289-293.
  • [51]Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L: Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 2011, 30(1):90-98.
  • [52]Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, Becker MS, Alt FW, Dekker J: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 2012, 148(5):908-921.
  • [53]Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M: Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 2007, 116(3):285-306.
  • [54]Davies HG: Fine structure of heterochromatin in certain cell nuclei. Nature 1967, 214:208-210.
  • [55]Gilchrist S, Gilbert N, Perry P, Bickmore WA: Nuclear organization of centromeric domains is not perturbed by inhibition of histone deacetylases. Chromosome Res 2004, 12(5):505-516.
  • [56]Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, Solovei I: Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 2003, 11(5):485-502.
  • [57]Padeken J, Heun P: Nucleolus and nuclear periphery: velcro for heterochromatin. Curr Opin Cell Biol 2014, 28:54-60.
  • [58]Towbin BD, Gonzalez-Sandoval A, Gasser SM: Mechanisms of heterochromatin subnuclear localization. Trends Biochem Sci 2013, 38(7):356-363.
  • [59]Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD: Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 2005, 8(1):19-30.
  • [60]Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B: Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 2009, 137(2):356-368.
  • [61]Eberhart A, Feodorova Y, Song C, Wanner G, Kiseleva E, Furukawa T, Kimura H, Schotta G, Leonhardt H, Joffe B, Solovei I: Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Res 2013, 21(5):535-554.
  • [62]Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P: Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502(7469):59-64.
  • [63]Iborra FJ, Pombo A, Jackson DA, Cook PR: Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 1996, 109(6):1427-1436.
  • [64]Sutherland H, Bickmore WA: Transcription factories: gene expression in unions? Nat Rev Genet 2009, 10(7):457-466.
  • [65]Brown JM, Green J, Das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ: Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 2008, 182(6):1083-1097.
  • [66]Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453(7197):948-951.
  • [67]Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T: Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 2010, 75:475-492.
  • [68]Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E: Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485(7398):381-385.
  • [69]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485(7398):376-380.
  • [70]Nora EP, Dekker J, Heard E: Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bioessays 2013, 35(9):818-828.
  • [71]Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F: Functional and topological characteristics of mammalian regulatory domains. Genome Res 2014, 24(3):390-400.
  • [72]Hou C, Li L, Qin ZS, Corces VG: Gene density, transcription, and insulators contribute to the partition of the drosophila genome into physical domains. Mol Cell 2012, 48(3):471-484.
  • [73]Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148(3):458-472.
  • [74]Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS: Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 2014, 111(3):996-1001.
  • [75]Seitan V, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E, Lenhard B, Giorgetti L, Heard E, Fisher AG, Flicek P, Dekker J, Merkenschlager M: Cohesin-based chromatin interactions enable regulated gene expression within pre-existing architectural compartments. Genome Res 2013, 23:2066-2077.
  • [76]Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H, Pollard SM, Schroth GP, Tanay A, Hadjur S: Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J 2013, 32(24):3119-3129.
  • [77]Craig JM, Boyle S, Perry P, Bickmore WA: Scaffold attachments within the human genome. J Cell Sci 1997, 110(Pt 21):2673-2682.
  • [78]Gasser SM, Amati BB, Cardenas ME, Hofmann JF: Studies on scaffold attachment sites and their relation to genome function. Int Rev Cytol 1989, 119:57-96.
  • [79]Le TB, Imakaev MV, Mirny LA, Laub MT: High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013, 342(6159):731-734.
  • [80]Benedetti F, Dorier J, Burnier Y, Stasiak A: Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 2014, 42(5):2848-2855.
  • [81]Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G, Heard E: Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 2013, 157(4):950-963.
  • [82]Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker J, Taylor J, Corces VG: Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 2013, 153(6):1281-1295.
  • [83]Dekker J: Gene regulation in the third dimension. Science 2008, 319(5871):1793-1794.
  • [84]Kadauke S, Blobel GA: Chromatin loops in gene regulation. Biochim Biophys Acta 2009, 1789(1):17-25.
  • [85]Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW: Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996, 85(5):745-759.
  • [86]Hofmann JF, Laroche T, Brand AH, Gasser SM: RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML. Cell 1989, 57(5):725-737.
  • [87]Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P: Long-range chromatin regulatory interactions in vivo. Nat Genet 2002, 32(4):623-626.
  • [88]Vernimmen D, De Gobbi M, Sloane-Stanley JA, Wood WG, Higgs DR: Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J 2007, 26(8):2041-2051.
  • [89]Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA: The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 2011, 18(1):107-114.
  • [90]Dekker J, Rippe K, Dekker M, Kleckner N: Capturing chromosome conformation. Science 2002, 295(5558):1306-1311.
  • [91]Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R: Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 2006, 38(11):1341-1347.
  • [92]Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J: Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006, 16(10):1299-1309.
  • [93]Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs DR: Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 2014, 46(2):205-212.
  • [94]Kolovos P, van de Werken HJ, Kepper N, Zuin J, Brouwer RW, Kockx CE, Wendt KS, van IJcken WF, Grosveld F, Knoch TA: Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 2014, 16(7):10.
  • [95]Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B: A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013, 503(7475):290-294.
  • [96]Jackson DA, Dickinson P, Cook PR: The size of chromatin loops in HeLa cells. EMBO J 1990, 9(2):567-571.
  • [97]Gorkin DU, Leung D, Ren B: The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 2014, 14(6):762-775.
  • [98]Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B: A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488(7409):116-120.
  • [99]Kosak ST, Groudine M: Form follows function: the genomic organization of cellular differentiation. Genes Dev 2004, 18(12):1371-1384.
  • [100]Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV: Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013, 587(13):1840-1847.
  • [101]Shopland LS, Lynch CR, Peterson KA, Thornton K, Kepper N, Hase JV, Stein S, Vincent S, Molloy KR, Kreth G, Cremer C, Bult CJ, O’Brien TP: Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 2006, 174(1):27-38.
  • [102]Noordermeer D, de Wit E, Klous P, van de Werken H, Simonis M, Lopez-Jones M, Eussen B, de Klein A, Singer RH, de Laat W: Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol 2011, 13(8):944-951.
  • [103]Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B: Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 2007, 128(6):1231-1245.
  • [104]Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B: Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 2010, 38(4):603-613.
  • [105]Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H: Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002, 296(5565):158-162.
  • [106]Kölbl AC, Weigl D, Mulaw M, Thormeyer T, Bohlander SK, Cremer T, Dietzel S: The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains. Chromosome Res 2012, 20(6):735-752.
  • [107]Craig JM, Bickmore WA: Chromosome bands-flavours to savour. Bioessays 1993, 15:349-354.
  • [108]Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AM, Davison V, O'Neill LP, Turner BM: Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 2010, 11(11):R110. BioMed Central Full Text
  • [109]Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J: Organization of the mitotic chromosome. Science 2013, 342(6161):948-953.
  • [110]Bak AL, Zeuthen J, Crick FH: Higher-order structure of human mitotic chromosomes. Proc Natl Acad Sci U S A 1977, 74(4):1595-1599.
  • [111]Paulson JR, Laemmli UK: The structure of histone-depleted metaphase chromosomes. Cell 1977, 12(3):817-828.
  • [112]Marsden MP, Laemmli UK: Metaphase chromosome structure: evidence for a radial loop model. Cell 1979, 17(4):849-858.
  • [113]Belmont AS, Sedat JW, Agard DA: A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J Cell Biol 1987, 105(1):77-92.
  • [114]Maeshima K, Laemmli UK: A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 2003, 4(4):467-480.
  • [115]Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS: Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 2004, 166(6):775-785.
  • [116]Poirier MG, Marko JF: Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci U S A 2002, 99(24):15393-15397.
  • [117]Dupraw EJ: Evidence for a ‘folded-fibre’ organization in human chromosomes. Nature 1966, 209(5023):577-581.
  • [118]Strukov YG, Belmont AS: Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. Biophys J 2009, 96(4):1617-1628.
  • [119]Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK: Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 1986, 188(4):613-629.
  • [120]Samejima K, Samejima I, Vagnarelli P, Ogawa H, Vargiu G, Kelly DA, de Lima AF, Kerr A, Green LC, Hudson DF, Ohta S, Cooke CA, Farr CJ, Rappsilber J, Earnshaw WC: Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J Cell Biol 2012, 199(5):755-770.
  • [121]Earnshaw WC, Laemmli UK: Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 1983, 96(1):84-93.
  • [122]Boy de la Tour E, Laemmli UK: The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 1988, 55(6):937-944.
  • [123]Mirkovitch J, Mirault ME, Laemmli UK: Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 1984, 39(1):223-232.
  • [124]Hart CM, Laemmli UK: Facilitation of chromatin dynamics by SARs. Curr Opin Genet Dev 1998, 8(5):519-525.
  • [125]Laemmli UK, Käs E, Poljak L, Adachi Y: Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev 1992, 2(2):275-285.
  • [126]Garrard WT: Chromosomal Loop Organization in Eukaryotic Genomes. In Nucleic Acids and Molecular Biology. Edited by Eckstein F, Lilley DMJ. Berlin Heidelberg: Springer-Verlag; 1990.
  • [127]Saitoh Y, Laemmli UK: Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 1994, 76(4):609-622.
  • [128]Mirny LA: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 2011, 19(1):37-51.
  • [129]Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K: Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 2012, 31(7):1644-1653.
  • [130]Belmont AS, Bruce K: Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 1994, 127(2):287-302.
  • [131]Rohlf T, Steiner L, Przybilla J, Prohaska S, Binder H, Galle J: Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin. Epigenomics 2012, 4(2):205-219.
  • [132]Sinclair P, Bian Q, Plutz M, Heard E, Belmont AS: Dynamic plasticity of large-scale chromatin structure revealed by self-assembly of engineered chromosome regions. J Cell Biol 2010, 190(5):761-776.
  • [133]Cook PR, Marenduzzo D: Entropic organization of interphase chromosomes. J Cell Biol 2009, 186(6):825-834.
  • [134]Rippe K: Dynamic organization of the cell nucleus. Curr Opin Genet Dev 2007, 17(5):373-380.
  • [135]Follmer NE, Wani AH, Francis NJ: A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 2012, 8(12):e1003135.
  • [136]Thomson I, Gilchrist S, Bickmore WA, Chubb JR: The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 2004, 14(2):166-172.
  • [137]Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B: Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013, 153(1):178-192.
  文献评价指标  
  下载次数:0次 浏览次数:4次