Journal of Neuroinflammation | |
Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism | |
José L Venero2  Bertrand Joseph3  Rocío M De Pablos2  Antonio J Herrera2  Miguel A Burguillos1  Nikenza Viceconte4  | |
[1] Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, United Kingdom;Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain;Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, Stockholm, 17176, Sweden;Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 17177, Sweden | |
关键词: Parkinson’s disease; neuroinflammation; microglia; cytokines; caspase-8; caspase-3; | |
Others : 1133401 DOI : 10.1186/s12974-014-0228-x |
|
received in 2014-09-09, accepted in 2014-12-21, 发布年份 2015 | |
【 摘 要 】
Background
We have uncovered a caspase-dependent (caspase-8/caspase-3/7) signaling governing microglia activation and associated neurotoxicity. Importantly, a profuse non-nuclear activation of cleaved caspases 8 and 3 was found in reactive microglia in the ventral mesencephalon from subjects with Parkinson’s disease, thus supporting the existence of endogenous factors activating microglia through a caspase-dependent mechanism. One obvious candidate is neuromelanin, which is an efficient proinflammogen in vivo and in vitro and has been shown to have a role in the pathogenesis of Parkinson’s disease. Consequently, the goal of this study is to test whether synthetic neuromelanin activates microglia in a caspase-dependent manner.
Results
We found an in-vivo upregulation of CD16/32 (M1 marker) in Iba1-immunolabeled microglia in the ventral mesencephalon after neuromelanin injection. In vitro experiments using BV2 cells, a microglia-derived cell line, demonstrated that synthetic neuromelanin induced a significant chemotactic response to BV2 microglial cells, along with typical morphological features of microglia activation, increased oxidative stress and induction of pattern-recognition receptors including Toll-like receptor 2, NOD2, and CD14. Analysis of IETDase (caspase-8) and DEVDase (caspase-3/7) activities in BV2 cells demonstrated a modest but significant increase of both activities in response to neuromelanin treatment, in the absence of cell death.
Conclusions
Caspase-8 inhibition prevented typical features of microglia activation, including morphological changes, a high rate of oxidative stress and expression of key proinflammatory cytokines and iNOS.
【 授权许可】
2015 Viceconte et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150304144623211.pdf | 3943KB | download | |
Figure 11. | 77KB | Image | download |
Figure 10. | 94KB | Image | download |
Figure 9. | 31KB | Image | download |
Figure 8. | 48KB | Image | download |
Figure 7. | 17KB | Image | download |
Figure 6. | 34KB | Image | download |
Figure 5. | 8KB | Image | download |
Figure 4. | 14KB | Image | download |
Figure 3. | 60KB | Image | download |
Figure 2. | 20KB | Image | download |
Figure 1. | 97KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
【 参考文献 】
- [1]Venero JL, Burguillos MA, Joseph B: Caspases playing in the field of neuroinflammation: old and new players. Dev Neurosci 2013, 35(2–3):88-101.
- [2]Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004, 5(11):897-907.
- [3]Li J, Yuan J: Caspases in apoptosis and beyond. Oncogene 2008, 27(48):6194-206.
- [4]Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al.: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011, 471(7338):363-7.
- [5]Hyman BT, Yuan J: Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012, 13(6):395-406.
- [6]Sola S, Aranha MM, Rodrigues CM: Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012, 46(2):316-31.
- [7]Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, et al.: Caspase signalling controls microglia activation and neurotoxicity. Nature 2011, 472(7343):319-24.
- [8]Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, et al.: Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000, 23(10 Suppl):S8-19.
- [9]Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8(4):382-97.
- [10]Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208(1):1-25.
- [11]Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, et al.: Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003, 60(8):1059-64.
- [12]Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, et al.: Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 2005, 58(6):963-7.
- [13]Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G: Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 2007, 205(2):295-312.
- [14]Deleidi M, Gasser T: The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci 2013, 70(22):4259-73.
- [15]Venero JL, Burguillos MA, Brundin P, Joseph B: The executioners sing a new song: killer caspases activate microglia. Cell Death Differ 2011, 18(11):1679-91.
- [16]Koutsilieri E, Lutz MB, Scheller C: Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J Neural Transm 2013, 120(1):75-81.
- [17]Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R: Activation of microglia by human neuromelanin is NF-κB-dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 2003, 17(3):500-2.
- [18]Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, et al.: Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 2008, 116(1):47-55.
- [19]Zhang W, Zecca L, Wilson B, Ren HW, Wang YJ, Wang XM, et al.: Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death. Front Biosci (Elite Ed). 2013, 5:1-11.
- [20]Ishikawa A, Takahashi H: Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 1998, 245(11 Suppl 3):4-9.
- [21]Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999, 46(4):598-605.
- [22]Karlsson O, Lindquist NG: Melanin affinity and its possible role in neurodegeneration. J Neural Transm 2013, 120(12):1623-30.
- [23]McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987, 79(1–2):195-200.
- [24]McGeer PL, Itagaki S, McGeer EG: Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 1988, 76(6):550-7.
- [25]Hirsch EC, Vyas S, Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012, 18(Suppl 1):S210-2.
- [26]Tansey MG, Goldberg MS: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010, 37(3):510-8.
- [27]Barnum CJ, Tansey MG: Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res. 2010, 184:113-32.
- [28]Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219(4587):979-80.
- [29]McGeer PL, Schwab C, Parent A, Doudet D: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 2003, 54(5):599-604.
- [30]Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM: A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005, 128(11):2665-74.
- [31]Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, et al.: Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007, 114(4):419-24.
- [32]Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DK, Blackie J, et al.: Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 2009, 217(2):297-301.
- [33]Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG: A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 2006, 67(7 Suppl 2):S8-11.
- [34]Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, et al.: The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 2004, 17(6):610-7.
- [35]Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P: Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res 2003, 5(1–2):35-44.
- [36]Zecca L, Mecacci C, Seraglia R, Parati E: The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1992, 1138(1):6-10.
- [37]Shima T, Sarna T, Swartz HM, Stroppolo A, Gerbasi R, Zecca L: Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 1997, 23(1):110-9.
- [38]Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29(43):13435-44.
- [39]Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al.: Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43(11):3063-70.
- [40]Neniskyte U, Brown GC: Analysis of microglial production of reactive oxygen and nitrogen species. Methods Mol Biol. 2013, 1041:103-11.
- [41]Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, et al.: Innate immune receptor expression in normal brain aging. Neuroscience 2007, 146(1):248-54.
- [42]Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV: Toll-like receptors in neurodegeneration. Brain Res Rev 2009, 59(2):278-92.
- [43]Fernando P, Megeney LA: Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 2007, 21(1):8-17.
- [44]Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005, 76(2):77-98.