期刊论文详细信息
Journal of Neuroinflammation
Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism
José L Venero2  Bertrand Joseph3  Rocío M De Pablos2  Antonio J Herrera2  Miguel A Burguillos1  Nikenza Viceconte4 
[1] Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, E1 2AT, United Kingdom;Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain;Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, Stockholm, 17176, Sweden;Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 17177, Sweden
关键词: Parkinson’s disease;    neuroinflammation;    microglia;    cytokines;    caspase-8;    caspase-3;   
Others  :  1133401
DOI  :  10.1186/s12974-014-0228-x
 received in 2014-09-09, accepted in 2014-12-21,  发布年份 2015
PDF
【 摘 要 】

Background

We have uncovered a caspase-dependent (caspase-8/caspase-3/7) signaling governing microglia activation and associated neurotoxicity. Importantly, a profuse non-nuclear activation of cleaved caspases 8 and 3 was found in reactive microglia in the ventral mesencephalon from subjects with Parkinson’s disease, thus supporting the existence of endogenous factors activating microglia through a caspase-dependent mechanism. One obvious candidate is neuromelanin, which is an efficient proinflammogen in vivo and in vitro and has been shown to have a role in the pathogenesis of Parkinson’s disease. Consequently, the goal of this study is to test whether synthetic neuromelanin activates microglia in a caspase-dependent manner.

Results

We found an in-vivo upregulation of CD16/32 (M1 marker) in Iba1-immunolabeled microglia in the ventral mesencephalon after neuromelanin injection. In vitro experiments using BV2 cells, a microglia-derived cell line, demonstrated that synthetic neuromelanin induced a significant chemotactic response to BV2 microglial cells, along with typical morphological features of microglia activation, increased oxidative stress and induction of pattern-recognition receptors including Toll-like receptor 2, NOD2, and CD14. Analysis of IETDase (caspase-8) and DEVDase (caspase-3/7) activities in BV2 cells demonstrated a modest but significant increase of both activities in response to neuromelanin treatment, in the absence of cell death.

Conclusions

Caspase-8 inhibition prevented typical features of microglia activation, including morphological changes, a high rate of oxidative stress and expression of key proinflammatory cytokines and iNOS.

【 授权许可】

   
2015 Viceconte et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304144623211.pdf 3943KB PDF download
Figure 11. 77KB Image download
Figure 10. 94KB Image download
Figure 9. 31KB Image download
Figure 8. 48KB Image download
Figure 7. 17KB Image download
Figure 6. 34KB Image download
Figure 5. 8KB Image download
Figure 4. 14KB Image download
Figure 3. 60KB Image download
Figure 2. 20KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Venero JL, Burguillos MA, Joseph B: Caspases playing in the field of neuroinflammation: old and new players. Dev Neurosci 2013, 35(2–3):88-101.
  • [2]Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004, 5(11):897-907.
  • [3]Li J, Yuan J: Caspases in apoptosis and beyond. Oncogene 2008, 27(48):6194-206.
  • [4]Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al.: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011, 471(7338):363-7.
  • [5]Hyman BT, Yuan J: Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012, 13(6):395-406.
  • [6]Sola S, Aranha MM, Rodrigues CM: Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012, 46(2):316-31.
  • [7]Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, et al.: Caspase signalling controls microglia activation and neurotoxicity. Nature 2011, 472(7343):319-24.
  • [8]Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, et al.: Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000, 23(10 Suppl):S8-19.
  • [9]Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009, 8(4):382-97.
  • [10]Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208(1):1-25.
  • [11]Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, et al.: Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003, 60(8):1059-64.
  • [12]Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, et al.: Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 2005, 58(6):963-7.
  • [13]Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G: Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 2007, 205(2):295-312.
  • [14]Deleidi M, Gasser T: The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol Life Sci 2013, 70(22):4259-73.
  • [15]Venero JL, Burguillos MA, Brundin P, Joseph B: The executioners sing a new song: killer caspases activate microglia. Cell Death Differ 2011, 18(11):1679-91.
  • [16]Koutsilieri E, Lutz MB, Scheller C: Autoimmunity, dendritic cells and relevance for Parkinson’s disease. J Neural Transm 2013, 120(1):75-81.
  • [17]Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R: Activation of microglia by human neuromelanin is NF-κB-dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 2003, 17(3):500-2.
  • [18]Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, et al.: Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 2008, 116(1):47-55.
  • [19]Zhang W, Zecca L, Wilson B, Ren HW, Wang YJ, Wang XM, et al.: Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death. Front Biosci (Elite Ed). 2013, 5:1-11.
  • [20]Ishikawa A, Takahashi H: Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 1998, 245(11 Suppl 3):4-9.
  • [21]Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999, 46(4):598-605.
  • [22]Karlsson O, Lindquist NG: Melanin affinity and its possible role in neurodegeneration. J Neural Transm 2013, 120(12):1623-30.
  • [23]McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987, 79(1–2):195-200.
  • [24]McGeer PL, Itagaki S, McGeer EG: Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 1988, 76(6):550-7.
  • [25]Hirsch EC, Vyas S, Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012, 18(Suppl 1):S210-2.
  • [26]Tansey MG, Goldberg MS: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010, 37(3):510-8.
  • [27]Barnum CJ, Tansey MG: Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res. 2010, 184:113-32.
  • [28]Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219(4587):979-80.
  • [29]McGeer PL, Schwab C, Parent A, Doudet D: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 2003, 54(5):599-604.
  • [30]Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM: A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005, 128(11):2665-74.
  • [31]Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, et al.: Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007, 114(4):419-24.
  • [32]Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DK, Blackie J, et al.: Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 2009, 217(2):297-301.
  • [33]Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG: A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology 2006, 67(7 Suppl 2):S8-11.
  • [34]Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, et al.: The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 2004, 17(6):610-7.
  • [35]Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P: Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res 2003, 5(1–2):35-44.
  • [36]Zecca L, Mecacci C, Seraglia R, Parati E: The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1992, 1138(1):6-10.
  • [37]Shima T, Sarna T, Swartz HM, Stroppolo A, Gerbasi R, Zecca L: Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 1997, 23(1):110-9.
  • [38]Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29(43):13435-44.
  • [39]Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al.: Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43(11):3063-70.
  • [40]Neniskyte U, Brown GC: Analysis of microglial production of reactive oxygen and nitrogen species. Methods Mol Biol. 2013, 1041:103-11.
  • [41]Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, et al.: Innate immune receptor expression in normal brain aging. Neuroscience 2007, 146(1):248-54.
  • [42]Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV: Toll-like receptors in neurodegeneration. Brain Res Rev 2009, 59(2):278-92.
  • [43]Fernando P, Megeney LA: Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 2007, 21(1):8-17.
  • [44]Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005, 76(2):77-98.
  文献评价指标  
  下载次数:72次 浏览次数:8次