期刊论文详细信息
Journal of Physiological Anthropology
A human-specific allelic group of the MHC DRB1 gene in primates
Yoko Satta2  Yoshiki Yasukochi1 
[1] Molecular and Genetic Epidemiology, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Ibaraki, Japan;Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (SOKENDAI), 240-0193 Hayama, Kanagawa, Japan
关键词: Trans-species polymorphism;    Pathogen;    Out-of-Africa;    HLA;    Balancing selection;    Allelic lineage;   
Others  :  861352
DOI  :  10.1186/1880-6805-33-14
 received in 2013-12-24, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

Diversity among human leukocyte antigen (HLA) molecules has been maintained by host-pathogen coevolution over a long period of time. Reflecting this diversity, the HLA loci are the most polymorphic in the human genome. One characteristic of HLA diversity is long-term persistence of allelic lineages, which causes trans-species polymorphisms to be shared among closely related species. Modern humans have disseminated across the world after their exodus from Africa, while chimpanzees have remained in Africa since the speciation event between humans and chimpanzees. It is thought that modern humans have recently acquired resistance to novel pathogens outside Africa. In the present study, we investigated HLA alleles that could contribute to this local adaptation in humans and also studied the contribution of natural selection to human evolution by using molecular data.

Results

Phylogenetic analysis of HLA-DRB1 genes identified two major groups, HLA Groups A and B. Group A formed a monophyletic clade distinct from DRB1 alleles in other Catarrhini, suggesting that Group A is a human-specific allelic group. Our estimates of divergence time suggested that seven HLA-DRB1 Group A allelic lineages in humans have been maintained since before the speciation event between humans and chimpanzees, while chimpanzees possess only one DRB1 allelic lineage (Patr-DRB1*03), which is a sister group to Group A. Experimental data showed that some Group A alleles bound to peptides derived from human-specific pathogens. Of the Group A alleles, three exist at high frequencies in several local populations outside Africa.

Conclusions

HLA Group A alleles are likely to have been retained in human lineages for a long period of time and have not expanded since the divergence of humans and chimpanzees. On the other hand, most orthologs of HLA Group A alleles may have been lost in the chimpanzee due to differences in selective pressures. The presence of alleles with high frequency outside of Africa suggests these HLA molecules result from the local adaptations of humans. Our study helps elucidate the mechanism by which the human adaptive immune system has coevolved with pathogens over a long period of time.

【 授权许可】

   
2014 Yasukochi and Satta; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725000658739.pdf 951KB PDF download
42KB Image download
124KB Image download
【 图 表 】

【 参考文献 】
  • [1]Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, Mcdonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES: Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419:832-837.
  • [2]Hill AV: The immunogenetics of human infectious diseases. Annu Rev Immunol 1998, 16:593-617.
  • [3]The MHC sequencing consortium: Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401:921-923.
  • [4]Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC: The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987, 329:512-518.
  • [5]Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC: Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993, 364:33-39.
  • [6]Hughes AL, Nei M: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci U S A 1989, 86:958-962.
  • [7]Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988, 335:167-170.
  • [8]Takahata N, Satta Y, Klein J: Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 1992, 130:925-938.
  • [9]Satta Y, O’hUigin C, Takahata N, Klein J: Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci U S A 1994, 91:7184-7188.
  • [10]Klein J, Sato A, Nikolaidis N: MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 2007, 41:281-304.
  • [11]Takahata N, Nei M: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 1990, 124:967-978.
  • [12]Satta Y, O’hUigin C, Takahata N, Klein J: The synonymous substitution rate of the major histocompatibility complex loci in primates. Proc Natl Acad Sci U S A 1993, 90:7480-7484.
  • [13]Muchmore EA: Chimpanzee models for human disease and immunobiology. Immunol Rev 2001, 183:86-93.
  • [14]Kenter M, Otting N, Anholts J, Jonker M, Schipper R, Bontrop RE: Mhc-DRB diversity of the chimpanzee (Pan troglodytes). Immunogenetics 1992, 37:1-11.
  • [15]Mayer WE, O’hUigin C, Zaleska-Rutczynska Z, Klein J: Trans-species origin of Mhc-DRB polymorphism in the chimpanzee. Immunogenetics 1992, 37:12-23.
  • [16]Bontrop RE, Otting N, de Groot NG, Doxiadis GGM: Major histocompatibility complex class II polymorphisms in primates. Immunol Rev 1999, 167:339-350.
  • [17]Yasukochi Y, Satta Y: Current perspectives on the intensity of natural selection of MHC loci. Immunogenetics 2013, 65:479-483.
  • [18]Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SGE: The IMGT/HLA database. Nucleic Acids Res 2011, 39:D1171-D1176.
  • [19]Robinson J, Waller MJ, Stoehr P, Marsh SGE: IPD-the immuno polymorphism database. Nucleic Acids Res 2005, 33:D523-D526.
  • [20]Satta Y: Balancing selection at HLA loci. In Proceedings of the 17th Taniguchi Symposium. Edited by Takahata N. Tokyo: Japan Science Society Press; 1992:111-131.
  • [21]Kusaba M, Nishio T, Satta Y, Hinata K, Ockendon D: Striking sequence similarity in inter- and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: implications for the evolution and recognition mechanism. Proc Natl Acad Sci U S A 1997, 94:7673-7678.
  • [22]Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y: MHC class II DQB diversity in the Japanese black bear: Ursus thibetanus japonicus. BMC Evol Biol 2012, 12:230. BioMed Central Full Text
  • [23]Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC: Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994, 368:215-221.
  • [24]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [25]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
  • [26]Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 1998, 95:3708-3713.
  • [27]Jukes T, Cantor C: Evolution of protein molecules. In Mammalian Protein Metabolism. Edited by Munro H. New York: Academic; 1969:21-132.
  • [28]Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B: The immune epitope database 2.0. Nucleic Acids Res 2010, 38:D854-D862.
  • [29]Meyer D, Single R, Mack S, Lancaster A, Nelson M, Erlich H, Fernandez-Vina M, Thomson G: Single locus polymorphism of classical HLA genes. In Immunobiolology of the Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Conference, Volume I. Edited by Hansen JA. Seattle, WA: IHWG Press; 2007:653-704.
  • [30]Klein J: Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 1987, 19:155-162.
  • [31]Klein J, Sato A, Nagl S, O’hUigin C: Molecular trans-species polymorphism. Annu Rev Ecol Syst 1998, 29:1-21.
  • [32]Satta Y, Hickerson M, Watanabe H, O’hUigin C, Klein J: Ancestral population sizes and species divergence times in the primate lineage on the basis of intron and BAC end sequences. J Mol Evol 2004, 59:478-487.
  • [33]Steiper ME, Young NM: Primate molecular divergence dates. Mol Phylogenet Evol 2006, 41:384-394.
  • [34]Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T, McCarthy S, Montgomery SH, Schwalie PC, Tang YA, Ward MC, Xue Y, Yngvadottir B, Alkan C, Andersen LN, Ayub Q, Ball EV, Beal K, Bradley BJ, Chen Y, Clee CM, Fitzgerald S, Graves TA, Gu Y, Heath P, Heger A, et al.: Insights into hominid evolution from the gorilla genome sequence. Nature 2012, 483:169-175.
  • [35]Takahata N: Evolutionary genetics of human paleo-populations. In Mechanisms of molecular evolution. Edited by Takahata N, Clark A. Sunderland, Massachusetts: Sinauer Associates; 1993:1-21.
  • [36]Takahata N, Satta Y, Klein J: Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol 1995, 48:198-221.
  • [37]Satta Y: Comparison of DNA and protein polymorphisms between humans and chimpanzees. Genes Genet Syst 2001, 76:159-168.
  • [38]Kim HL, Igawa T, Kawashima A, Satta Y, Takahata N: Divergence, demography and gene loss along the human lineage. Philos Trans R Soc Lond B Biol Sci 2010, 365:2451-2457.
  • [39]Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP: CD46: expanding beyond complement regulation. Trends Immunol 2004, 25:496-503.
  • [40]Guiso N: Bordetella pertussis and pertussis vaccines. Clin Infect Dis 2009, 49:1565-1569.
  • [41]Osterhaus A, Rimmelzwaan G, Martina B, Bestebroer T, Fouchier R: Influenza B virus in seals. Science 2000, 288:1051-1053.
  • [42]De Groot NG, Otting N, Doxiadis GGM, Balla-Jhagjhoorsingh SS, Heeney JL, van Rood JJ, Gagneux P, Bontrop RE: Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci U S A 2002, 99:11748-11753.
  • [43]Gyllensten UB, Sundvall M, Erlich HA: Allelic diversity is generated by intraexon sequence exchange at the DRB1 locus of primates. Proc Natl Acad Sci U S A 1991, 88:3686-3690.
  • [44]Bak EJ, Ishii Y, Omatsu T, Kyuwa S, Tetsuya T, Hayasaka I, Yoshikawa Y: Identification and analysis of MHC class II DRB1 (Patr-DRB1) alleles in chimpanzees. Tissue Antigens 2006, 67:134-142.
  • [45]De Zorzi M, Caggiari L, Ahlenstiel G, Rehermann B, De Re V: Description of two new major histocompatibility complex (MHC) class II DRB1 [Pan troglodytes (Patr)-DRB1] alleles. Tissue Antigens 2008, 71:490-492.
  • [46]Wilson D, Reeder D: Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd edition. Baltimore: Johns Hopkins University Press; 2005.
  文献评价指标  
  下载次数:18次 浏览次数:4次