期刊论文详细信息
Clinical Epigenetics
Epigenetic (de)regulation of adult hippocampal neurogenesis: implications for depression
Nuno Sousa1  Luísa Pinto1  António Mateus-Pinheiro1 
[1] ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
关键词: dentate gyrus;    hippocampus;    antidepressants;    epigenetics;    depression;    adult neurogenesis;   
Others  :  791532
DOI  :  10.1186/1868-7083-3-5
 received in 2011-04-08, accepted in 2011-11-01,  发布年份 2011
PDF
【 摘 要 】

Adult neurogenesis represents a dynamic level of modulation upon the neuroplastic properties of the mature nervous system, that is essential to the homeostatic brain function. The adult neurogenic process comprises several sequential steps, all of which subjected to an assortment of cell-intrinsic and neurogenic-niche complex regulatory mechanisms. Among these, epigenetic regulation is now emerging as a crucial regulator of several neurogenesis steps. In particular, the active regulation of hippocampal neurogenesis and its repercussions in global hippocampal function are of special interest for the biomedical field, since imbalances at this level have been strongly related to the precipitation of several neuropsychyatric disorders, such as depression. Indeed, growing evidence supports that the detrimental effects on adult hippocampal neurogenesis, that have been associated with depression, might be epigenetically-mediated. Therefore, understanding the epigenetic regulation of the neurogenic process may provide a link between neurogenesis imbalances and the deterioration of the behavioural and cognitive domains frequently affected in depression, thus contributing to unravel the complex pathophysiology of this disorder.

Here, we outline some of the major epigenetic mechanisms contributing to the regulation of hippocampal neurogenesis and discuss several lines of evidence supporting their involvement on the development of imbalances in the neurogenic process, often correlated to behavioural and cognitive deficits commonly observed in major depressive disorder.

【 授权许可】

   
2011 Mateus-Pinheiro et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705014359287.pdf 1399KB PDF download
Figure 5. 26KB Image download
Figure 4. 83KB Image download
Figure 3. 80KB Image download
Figure 2. 60KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Doetsch F, Caillé I, Lim Da, García-Verdugo JM, Alvarez-Buylla a: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97:703-716.
  • [2]Gage FH: Neurogenesis in the adult brain. The Journal of neuroscience: the official journal of the Society for Neuroscience 2002, 22:612-613.
  • [3]Silva R, Lu J, Wu Y, Martins L, Almeida OF, Sousa N: Mapping cellular gains and losses in the postnatal dentate gyrus: implications for psychiatric disorders. Exp Neurol 2006, 200(2):321-331.
  • [4]Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Götz M: Adult generation of glutamatergic olfactory bulb interneurons. Nature neuroscience 2009, 12:1524-1533.
  • [5]Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A: Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. The Journal of comparative neurology 2004, 478:359-378.
  • [6]Chumley MJ, Catchpole T, Silvany RE, Kernie SG, Henkemeyer M: EphB Receptors Regulate Stem/Progenitor Cell Proliferation, Migration, and Polarity during Hippocampal Neurogenesis. Journal of Neuroscience 2007, 27:13481-13490.
  • [7]Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y: Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 1999, 400:331.
  • [8]Luzzati F, De Marchis S, Fasolo A, Peretto P: Neurogenesis in the caudate nucleus of the adult rabbit. Journal of Neuroscience 2006, 26:609.
  • [9]Kodama M, Fujioka T, Duman RS: Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biological psychiatry 2004, 56:570-580.
  • [10]Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, et al.: Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nature Neuroscience 2009, 13:173-180.
  • [11]Gonçalves L, Silva R, Pinto-Ribeiro F, Pego JM, Bessa JM, Pertovaara A, Sousa N, Almeida A: Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat. Exp Neurol 2008, 213(1):48-56.
  • [12]Fowler CD, Liu Y, Ouimet C, Wang Z: The effects of social environment on adult neurogenesis in the female prairie vole. Journal of neurobiology 2002, 51:115-128.
  • [13]Kokoeva MV, Yin H, Flier JS: Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science (New York, NY) 2005, 310:679-683.
  • [14]Chmielnicki E, Benraiss A, Economides AN, Goldman Sa: Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. The Journal of neuroscience: the official journal of the Society for Neuroscience 2004, 24:2133-2142.
  • [15]Ehninger D, Kempermann G: Regional Effects of Wheel Running and Environmental Enrichment on Cell Genesis and Microglia Proliferation in the Adult Murine Neocortex. Cerebral Cortex 2003, 845-851.
  • [16]Eisch AJ, Cameron Ha, Encinas JM, Meltzer La, Ming G-L, Overstreet-Wadiche LS: Adult neurogenesis, mental health, and mental illness: hope or hype? The Journal of neuroscience: the official journal of the Society for Neuroscience 2008, 28:11785-11791.
  • [17]Kobayashi K: Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Molecular neurobiology 2009, 39:24-36.
  • [18]Sapolsky RM: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of general psychiatry 2000, 57:925.
  • [19]Balu DT, Lucki I: Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neuroscience and biobehavioral reviews 2009, 33:232-252.
  • [20]Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends in neurosciences 2004, 27:447-452.
  • [21]Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G: Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 2006, 54:805-814.
  • [22]Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult mammalian hippocampus. Journal of Neuroscience 2001, 21:7153.
  • [23]Filippov V: Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and Cellular Neuroscience 2003, 23:373-382.
  • [24]Rakic P: Elusive radial glial cells: historical and evolutionary perspective. Glia 2003, 43:19-32.
  • [25]Encinas JM, Vaahtokari A, Enikolopov G: Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America 2006, 103:8233-8238.
  • [26]Pleasure SJ, Collins aE, Lowenstein DH: Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. The Journal of neuroscience: the official journal of the Society for Neuroscience 2000, 20:6095-6105.
  • [27]Espósito MS, Piatti VC, Laplagne Da, Morgenstern Na, Ferrari CC, Pitossi FJ, Schinder AF: Neuronal differentiation in the adult hippocampus recapitulates embryonic development. The Journal of neuroscience: the official journal of the Society for Neuroscience 2005, 25:10074-10086.
  • [28]Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006, 26:3-11.
  • [29]Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, Santi S, Cuppini R: Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res 2004, 1017(1-2):21-31.
  • [30]van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH: Functional neurogenesis in the adult hippocampus. Nature 2002, 415(6875):10q-1034.
  • [31]Biebl M, Cooper CM, Winkler J, Kuhn HG: Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 2000, 291(1):17-20.
  • [32]Kuhn HG, Biebl M, Wilhelm D, Li M, Friedlander RM, Winkler J: Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur J Neurosci 2005, 22(8):1907-1915.
  • [33]Ninkovic J, Götz M: Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Current opinion in neurobiology 2007, 17:338-344.
  • [34]Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ: Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003, 425:962-967.
  • [35]Ng RK, Gurdon JB: Epigenetic inheritance of cell differentiation status. Cell Cycle 2008, 7:1173-1177.
  • [36]Ringrose L, Paro R: Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development (Cambridge, England) 2007, 134:223-232.
  • [37]Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G: Genome regulation by polycomb and trithorax proteins. Cell 2007, 128:735-745.
  • [38]Fasano Ca, Dimos JT, Ivanova NB, Lowry N, Lemischka IR, Temple S: shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell stem cell 2007, 1:87-99.
  • [39]Fasano Ca, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S: Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes & development 2009, 23:561-574.
  • [40]Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee K-F, Gage FH: Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proceedings of the National Academy of Sciences of the United States of America 2003, 100:6777-6782.
  • [41]Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, Kuwabara T, Gage FH, Zhao X: Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. The Journal of biological chemistry 2008, 283:27644-27652.
  • [42]Maisel M, Herr A, Milosevic J, Hermann A, Habisch H-J, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S, Lerche H, Schwarz J, Storch A: Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem cells (Dayton, Ohio) 2007, 25:1231-1240.
  • [43]Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, Thomas T, Voss AK: The transcriptional coactivator Querkopf controls adult neurogenesis. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006, 26:11359-11370.
  • [44]Mehler MF: Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in neurobiology 2008, 86:305-341.
  • [45]Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:16659-16664.
  • [46]Lim Da, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A: Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009, 458:529-533.
  • [47]Chong Ja, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman Ma, Kraner SD, Mandel G: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 1995, 80:949-957.
  • [48]Schoenherr CJ, Anderson DJ: Silencing is golden: negative regulation in the control of neuronal gene transcription. Current opinion in neurobiology 1995, 5:566-571.
  • [49]Ooi L, Wood IC: Chromatin crosstalk in development and disease: lessons from REST. Nature reviews Genetics 2007, 8:544-554.
  • [50]Otto SJ, McCorkle SR, Hover J, Conaco C, Han J-J, Impey S, Yochum GS, Dunn JJ, Goodman RH, Mandel G: A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. The Journal of neuroscience: the official journal of the Society for Neuroscience 2007, 27:6729-6739.
  • [51]Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S: REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 2008, 453:223-227.
  • [52]Ballas N, Mandel G: The many faces of REST oversee epigenetic programming of neuronal genes. Current opinion in neurobiology 2005, 15:500-506.
  • [53]Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K: The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & development 2007, 21:744-749.
  • [54]Wu J, Xie X: Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome biology 2006, 7:R85. BioMed Central Full Text
  • [55]Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM: Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 2009, 29(25):8288-8297.
  • [56]Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho Ra, Jaenisch R, Tsai L-H: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009, 459:55-60.
  • [57]Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Gottlicher M, Gotz M: The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol 2010, 6(2):93-107.
  • [58]Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science (New York, NY) 2003, 302:890-893.
  • [59]Zhou Z, Hong EJ, Cohen S, Zhao W-N, Ho H-YH, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JaJ, Weitz CJ, Greenberg ME: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 2006, 52:255-269.
  • [60]Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007, 27(1):77-89.
  • [61]Ma DK, Guo JU, Ming G, Song H: DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell cycle (Georgetown, Tex) 2009, 8:1526.
  • [62]Ma DK, Jang M-h, Guo JU, Kitabatake Y, Chang M-L, Pow-Anpongkul N, Flavell RA, Lu B, Ming G-l, Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science (New York, NY) 2009, 323:1074-1077.
  • [63]Mu Y, Lee S: Signaling in adult neurogenesis. Current Opinion in Neurobiology 2010, 20:416-423.
  • [64]Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science (New York, NY) 2004, 304:1338-1340.
  • [65]Ma DK, Ming G-L, Song H: Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Current opinion in neurobiology 2005, 15:514-520.
  • [66]Hsieh J, Eisch AJ: Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis 2010, 39(1):73-84.
  • [67]DeCarolis Na, Eisch AJ: Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010, 58:884-893.
  • [68]Duman RS: Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004, 5(1):11-25.
  • [69]Warner-Schmidt JL, Duman RS: Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006, 16(3):239-249.
  • [70]Bessa JM, Palha JA, Almeida OFX, Ferreira D, Sousa N, Melo I, Marques F, Cerqueira JJ: The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Molecular psychiatry 2009, 14:764-773. 739
  • [71]David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I, Drew M, Craig Da, Guiard BP, Guilloux J-P, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic Ia, Leonardo ED, Hen R: Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009, 62:479-493.
  • [72]Malberg JE, Eisch AJ, Nestler EJ, Duman RS: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience 2000, 20:9104.
  • [73]Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science (New York, NY) 2003, 301:805-809.
  • [74]Castrén E: Is mood chemistry? Nature reviews Neuroscience 2005, 6:241-246.
  • [75]Pittenger C, Duman RS: Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2008, 33:88-109.
  • [76]Sousa N, Madeira MD, Paula-Barbosa MM: Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain research 1998, 794:199-210.
  • [77]Abraham I, Juhasz G, Kekesi KA, Kovacs KJ: Corticosterone peak is responsible for stress-induced elevation of glutamate in the hippocampus. Stress 1998, 2(3):171-181.
  • [78]Lee J, Duan W, Mattson MP: Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of neurochemistry 2002, 82:1367-1375.
  • [79]Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E: Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. The Journal of neuroscience: the official journal of the Society for Neuroscience 2005, 25:1089-1094.
  • [80]Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrié P: Blockade of CRF1 or V1B receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Molecular Psychiatry 2004, 9:224-224.
  • [81]Coe C: Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile Rhesus monkeys. Biological Psychiatry 2003, 54:1025-1034.
  • [82]Sahay A, Hen R: Adult hippocampal neurogenesis in depression. Nature neuroscience 2007, 10:1110-1115.
  • [83]Banasr M, Valentine GW, Li X-Y, Gourley SL, Taylor JR, Duman RS: Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biological psychiatry 2007, 62:496-504.
  • [84]Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann JJ, Arango V: Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2009, 34:2376-2389.
  • [85]Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, Spitzer G, Santarelli L, Scharf B, Hen R, Rosoklija G, Sackeim Ha, Dwork AJ: Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. The Journal of neuroscience: the official journal of the Society for Neuroscience 2007, 27:4894-4901.
  • [86]Bessa JM, Mesquita AR, Oliveira M, Pêgo JM, Cerqueira JJ, Palha Ja, Almeida OFX, Sousa N: A trans-dimensional approach to the behavioral aspects of depression. Frontiers in behavioral neuroscience 2009, 3:1.
  • [87]Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere a, Tyers P, Jessberger S, Saksida LM, Barker Ra, Gage FH, Bussey TJ: A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science (New York, NY) 2009, 325:210-213.
  • [88]Dupret D, Revest J-M, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV: Spatial relational memory requires hippocampal adult neurogenesis. PloS one 2008, 3:e1959.
  • [89]Kee N, Teixeira CM, Wang AH, Frankland PW: Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature neuroscience 2007, 10:355-362.
  • [90]Holick Ka, Lee DC, Hen R, Dulawa SC: Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2008, 33:406-417.
  • [91]Jayatissa MN, Henningsen K, West MJ, Wiborg O: Decreased cell proliferation in the dentate gyrus does not associate with development of anhedonic-like symptoms in rats. Brain research 2009, 1290:133-141.
  • [92]Sapolsky RM: Is impaired neurogenesis relevant to the affective symptoms of depression? Biological psychiatry 2004, 56:137-139.
  • [93]Singer BH, Jutkiewicz EM, Fuller CL, Lichtenwalner RJ, Zhang H, Velander AJ, Li X, Gnegy ME, Burant CF, Parent JM: Conditional ablation and recovery of forebrain neurogenesis in the mouse. The Journal of comparative neurology 2009, 514:567-582.
  • [94]Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, Chen D, Jin P, Zhao X: The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Access 2008, 17:2047-2057.
  • [95]Bhaumik SR, Smith E, Shilatifard A: Covalent modifications of histones during development and disease pathogenesis. Nature structural & molecular biology 2007, 14:1008-1016.
  • [96]Garcia SN, Pereira-Smith O: MRGing chromatin dynamics and cellular senescence. Cell biochemistry and biophysics 2008, 50:133-141.
  • [97]Chen M, Takano-Maruyama M, Pereira-Smith OM, Gaufo GO, Tominaga K: MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells. Journal of neuroscience research 2009, 87:1522-1531.
  • [98]Adachi M, Autry AE, Covington HE, Monteggia LM: MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009, 29:4218-4227.
  • [99]Miller Ca, Campbell SL, Sweatt JD: DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of learning and memory 2008, 89:599-603.
  • [100]Miller Ca, Sweatt JD: Covalent modification of DNA regulates memory formation. Neuron 2007, 53:857-869.
  • [101]Poulter MO, Du L, Weaver ICG, Palkovits M, Faludi G, Merali Z, Szyf M, Anisman H: GABA(A) receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biological psychiatry 2008, 64:645-652.
  • [102]Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ: Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature neuroscience 2006, 9:519-525.
  • [103]Schneider JW, Gao Z, Li S, Farooqi M, Tang T-S, Bezprozvanny I, Frantz DE, Hsieh J: Small-molecule activation of neuronal cell fate. Nature chemical biology 2008, 4:408-410.
  • [104]Manji HK, Moore GJ, Chen G: Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biological psychiatry 2000, 48:740-754.
  • [105]Yu IT, Park J-Y, Kim SH, Lee J-S, Kim Y-S, Son H: Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 2009, 56:473-480.
  • [106]Semba J, Kuroda Y, Takahashi R: Potential antidepressant properties of subchronic GABA transaminase inhibitors in the forced swimming test in mice. Neuropsychobiology 1989, 21(3):152-156.
  • [107]Schroeder Fa, Lin CL, Crusio WE, Akbarian S: Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological psychiatry 2007, 62:55-64.
  • [108]Madsen TM, Treschow a, Bengzon J, Bolwig TG, Lindvall O, Tingström a: Increased neurogenesis in a model of electroconvulsive therapy. Biological psychiatry 2000, 47:1043-1049.
  • [109]Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y: Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 2010, 30(45):15007-15018.
  • [110]Bredy TW, Sun YE, Kobor MS: How the epigenome contributes to the development of psychiatric disorders. Developmental psychobiology 2010, 52:331-342.
  • [111]Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V, Bensadoun J-C, Cammas F, Losson R, Mansuy IM, Sandi C, Trono D: KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 2008, 60:818-831.
  文献评价指标  
  下载次数:14次 浏览次数:9次