期刊论文详细信息
Journal of Clinical Bioinformatics
Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine
K Stephen Suh4  Andre Goy4  Andrew Pecora4  Patrick Blake2  Pritish Bhattacharyya1  Ciaran Mannion1  Kip Nalley2  Christian Castaneda3 
[1] Department of Pathology, Hackensack University Medical Center, Hackensack 07601, NJ, USA;Sophic Alliance, 2275 Research Blvd., Suite 500, Rockville 20850, MD, USA;Genomics and Biomarkers Program, Hackensack University Medical Center, Hackensack 07601, NJ, USA;John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack 07601, NJ, USA
关键词: Watson;    Artificial intelligence;    Integrated knowledge environment;    Patient care;    Clinical outcome;    Clinical decision support system;    Clinical informatics;    Bioinformatics;    Precision medicine;    Personalized medicine;   
Others  :  1145419
DOI  :  10.1186/s13336-015-0019-3
 received in 2014-12-04, accepted in 2015-02-27,  发布年份 2015
PDF
【 摘 要 】

As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including ‘-omics’-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal, and logistical concerns. Ensuring data security and protection of patient rights while simultaneously facilitating standardization is paramount to maintaining public support. The capabilities of supercomputing need to be applied strategically. A standardized, methodological implementation must be applied to developed artificial intelligence systems with the ability to integrate data and information into clinically relevant knowledge. Ultimately, the integration of bioinformatics and clinical data in a clinical decision support system promises precision medicine and cost effective and personalized patient care.

【 授权许可】

   
2015 Castaneda et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150402090702708.pdf 538KB PDF download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]“Clinical Informatics”. Home. N.p., n.d. Web. 29 Dec. 2013. .
  • [2]“New Clinical Informatics Subspecialty and First Class of Diplomates Signal Pivot in Healthcare Delivery”. Home. N.p., n.d. Web. 29 Dec. 2013. .
  • [3]“Translational Bioinformatics”. Home. N.p., n.d. Web. 29 Dec. 2013. .
  • [4]Häyrinen K, Saranto K, Nykänen P: Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int J Med Inform 2008, 77(5):291-304.
  • [5]Katayama T, Arakawa K, Nakao M, Ono K, Aoki-Kinoshita KF, Yamamoto Y, et al.: The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*. J Biomed Semant 2010, 1(1):8.
  • [6]Defrancesco L: Life Technologies promises $1,000 genome. Nat Biotechnol 2012, 30(2):126.
  • [7]Steinbrook R: Health care and the American recovery and reinvestment act. N Engl J Med 2009, 360(11):1057-1060.
  • [8]Friedman CP, Wong AK, Blumenthal D: Achieving a nationwide learning health system. Sci Transl Med 2010, 2(57):57.
  • [9]Blumenthal D: Launching HITECH. N Engl J Med 2010, 362(5):382-385.
  • [10]Ash JS, Bates DW: Factors and forces affecting EHR system adoption: report of a 2004 ACMI discussion. J Am Med Inform Assoc 2005, 12(1):8-12.
  • [11]Holroyd-Leduc JM, Lorenzetti D, Straus SE, Sykes L, Quan H: The impact of the electronic medical record on structure, process, and outcomes within primary care: a systematic review of the evidence. J Am Med Inform Assoc 2011, 18(6):732-737. doi:10.1136/amiajnl-2010-000019
  • [12]Blake PM, Decker DA, Glennon TM, Liang YM, Losko S, Navin N, et al.: Toward an integrated knowledge environment to support modern oncology. Cancer J 2011, 17(4):257-263.
  • [13]Suh KS, Sarojini S, Youssif M, Nalley K, Milinovikj N, Elloumi F, et al.: Tissue banking, bioinformatics, and electronic medical records: the front end requirements for personalized medicine. J Oncol 2013, 2013:368751.
  • [14]The Kaiser permanente health record: transforming and streamlining modalities of care. Health Aff. 2009; 28(2): 323–333
  • [15]Hsiao C-J, Hing E: Use and characteristics of electronic health record systems among office-based physician practices: United States, 2001–2013. NCHS data brief, no 143. National Center for Health Statistics, Hyattsville, MD; 2014.
  • [16]Desroches CM, Charles D, Furukawa MF, Joshi MS, Kralovec P, Mostashari F, et al.: Adoption of electronic health records grows rapidly, but fewer than half of US hospitals had at least a basic system in 2012. Health Aff (Millwood) 2013, 32(8):1478-1485.
  • [17]Charles D, King J, Patel V, Furukawa MF: “Adoption of Electronic Health Record Systems among U.S. Non-federal Acute Care Hospitals: 2008–2012”, ONC Data Brief, no 9. Office of the National Coordinator for Health Information Technology, Washington, DC; 2013.
  • [18]Department of Health & Human Services: Electronic Health Record Vendors Reported by Health Care Providers Participating in Federal EHR Incentive Programs. 2014.
  • [19]Boonstra A, Broekhuis M: Barriers to the acceptance of electronic medical records by physicians from systematic review to taxonomy and interventions. BMC Health Serv Res 2010, 10:231.
  • [20]Von Eschenbach AC, Buetow K: Cancer informatics vision: caBIG. Cancer Inform 2006, 2:22-24.
  • [21]Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE: A roadmap for national action on clinical decision support. J Am Med Inform Assoc 2007, 14(2):141-145.
  • [22]2014 ACEP Polling Survey Results. April 2014. Accessed November 3, 2014.
  • [23]Petterson SM, Liaw WR, Phillips RL, Rabin DL, Meyers DS, Bazemore AW: Projecting US primary care physician workforce needs: 2010–2025. Ann Fam Med 2012, 10(6):503-509.
  • [24]Association of American Medical Colleges. GME Funding: How to Fix the Doctor Shortage. Available at: https://www.aamc.org/advocacy/campaigns_and_coalitions/fixdocshortage/.
  • [25]Social Security Administration Annual Performance Plan for fiscal year 2012. Available at: http://www.ssa.gov/agency/performance/2012/APP%202012%20508%20PDF.pdf Accessed November 3, 2014.
  • [26]Schiff GD, Hasan O, Kim S, Abrams R, Cosby K, Lambert BL, et al.: Diagnostic error in medicine: analysis of 583 physician-reported errors. Arch Intern Med 2009, 169(20):1881-1887.
  • [27]Singh H, Graber M: Reducing diagnostic error through medical home-based primary care reform. JAMA 2010, 304(4):463-464.
  • [28]Shojania KG, Burton EC, Mcdonald KM, Goldman L: Changes in rates of autopsy-detected diagnostic errors over time: a systematic review. JAMA 2003, 289(21):2849-2856.
  • [29]Singh H, Giardina TD, Meyer AN, Forjuoh SN, Reis MD, Thomas EJ: Types and origins of diagnostic errors in primary care settings. JAMA Int Med 2013, 173(6):418-425.
  • [30]Graber ML, Franklin N, Gordon R: Diagnostic error in internal medicine. Arch Intern Med 2005, 165(13):1493-1499.
  • [31]Sabertehrani AS, Lee H, Mathews SC, Shore A, Makary MA, Pronovost PJ, et al.: 25-Year summary of US malpractice claims for diagnostic errors 1986–2010: an analysis from the national practitioner data bank. BMJ Qual Saf 2013, 22(8):672-680.
  • [32]Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, et al.: Medication-related clinical decision support in computerized provider order entry systems: a review. J Am Med Inform Assoc 2007, 14(1):29-40.
  • [33]Kaushal R, Shojania KG, Bates DW: Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med 2003, 163(12):1409-1416.
  • [34]Chertow GM, Lee J, Kuperman GJ, Burdick E, Horsky J, Seger DL, et al.: Guided medication dosing for inpatients with renal insufficiency. JAMA 2001, 286(22):2839-2844.
  • [35]Bates DW, Teich JM, Lee J, Seger D, Kuperman GJ, MaLuf N, et al.: The impact of computerized physician order entry on medication error prevention. J Am Med Inform Assoc 1999, 6(4):313-321.
  • [36]Welch BM, Kawamoto K: Clinical decision support for genetically guided personalized medicine: a systematic review. J Am Med Inform Assoc 2013, 20(2):388-400. doi:10.1136/amiajnl-2012-000892. Epub 2012 Aug 25
  • [37]Stathonikos N, Veta M, Huisman A, Van Diest PJ: Going fully digital: perspective of a Dutch academic pathology lab. J Pathol Inf 2013, 4:15.
  • [38]Eminaga O, Abbas M, Hinkelammert R, Bettendorf O, Eltze E, Ozgur E, et al.: CMDX©-based single source information system for simplified quality management and clinical research in prostate cancer. BMC Med Inform Decis Mak 2012, 12:141.
  • [39]Berry DA, Iversen ES Jr, Gudbjartsson DF, Hiller EH, Garber JE, Peshkin BN, et al.: BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 2002, 20:2701e12.
  • [40]Jaspers MW, Smeulers M, Vermeulen H, Peute LW: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc 2011, 18(3):327-334. doi:10.1136/amiajnl-2011-000094. Epub 2011 Mar 21
  • [41]Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al.: Effect of clinical decision-support systems: a systematic review. Ann Intern Med 2012, 157(1):29-43. doi: 10.7326/0003-4819-157-1-201207030-00450
  • [42]Jha AK, Desroches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, et al.: Use of electronic health records in U.S. hospitals. N Engl J Med 2009, 360(16):1628-1638.
  • [43]National Institute of Standards and Technology. Available at: http://www.nist.gov/. Accessed November 3, 2014.
  • [44]Averill RF, Mullin RL, Steinbeck BA, Goldfield NI, Grant TM: Development of the ICD-10 procedure coding system (ICD-10-PCS). J AHIMA 1998, 69(5):65-72.
  • [45]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [46]National Information Standards Organization. Understanding Metadata. 2004; NISO Press. URL:http://www.niso.org/standards/resources/UnderstandingMetadata.pdf.
  • [47]Sen A: Metadata management: past, present and future. Decis Support Syst 2004, 37(1):151-173.
  • [48]Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12(1):56-68.
  • [49]Jeopardy! Episodes 27.111–3; National Broadcasting Company. 2011.
  • [50]Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, et al.: Building watson: an overview of the deep QA project. AI Mag 2010, 3:31.
  • [51]Ferrucci D, Levas A, Bagchi S, Gondek D, Mueller ET: Watson: beyond jeopardy! Artif Intell 2013, 199–200:93-105.
  • [52]Weiss SM, Kulikowski CA, Amarel S, Safir A: A model based method for computer-aided decision-making. Artif Intell 1978, 11(1):145-172.
  • [53]TED. Final Jeopardy! and the future of Watson. http://www.wired.co.uk/news/archive/2013-02/11/ibm-watson-medical-doctor (Accessed April 2012).
  • [54]IBM to Collaborate with Nuance to Apply IBM’s “Watson” Analytics Technology to Healthcare. IBM News Release 2011. https://blog.blackphone.ch/2015/03/02/mobileworldcongress/.
  • [55]MD Anderson Taps IBM Watson to Power “Moon Shots” Mission Aimed at Ending Cancer, Starting with Leukemia. IBM News Release. 2013. http://www-03.ibm.com/press/us/en/pressrelease/42214.wss.
  • [56]WellPoint and IBM Announce Agreement to Put Watson to Work in Health Care. IBM News Release 2011. http://www-03.ibm.com/press/us/en/pressrelease/35402.wss.
  • [57]Taylor RC: An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics. BMC Bioinforma 2010, 11(Suppl 12):S1.
  • [58]Weisstein E: Computable data, mathematics, and libraries in mathematica and wolfram alpha. Intell Comput Math 2014, 8543:26-29.
  • [59]Wolfram Language and System Documentation Center. Available at: http://reference.wolfram.com/language/. Accessed February 8, 2015.
  • [60]Arnaout R: Elementary, my dear doctor watson. Clin Chem 2012, 58(6):986-988.
  • [61]IBM Watson Hard At Work: New Breakthroughs Transform Quality Care for Patients. IBM News Release. 2013. https://www-03.ibm.com/press/us/en/pressrelease/40335.wss.
  • [62]Walker J, Pan E, Johnston D, Adler-milstein J, Bates DW, Middleton B: The value of health care information exchange and interoperability. Health Aff (Millwood) 2005, W5:10-18.
  • [63]5 billion dollar tech gambles. Available at: http://money.cnn.com/2011/02/14/technology/ibm_jeopardy_watson/. Accessed November 3, 2014.
  • [64]Sarkar IN, Butte AJ, Lussier YA, Tarczy-Hornoch P, Ohno-Machado L: Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc 2011, 18(4):354-357. doi:10.1136/amiajnl-2011-000245. Epub 2011 May 10
  • [65]Sophic Alliance. A White Paper on Scan-MaRK. http://www.sophicalliance.com/SCan-MarK.php.
  • [66]Hayden EC: Personalized cancer therapy gets closer. Nature 2009, 458(7235):131-132.
  • [67]Psaty BM, Furberg CD: COX-2 inhibitors–lessons in drug safety. N Engl J Med 2005, 352(11):1133-1135.
  • [68]Heeney C, Hawkins N, De Vries J, Boddington P, Kaye J: Assessing the privacy risks of data sharing in genomics. Public Health Genomics 2011, 14(1):17-25.
  • [69]Greenbaum D, Sboner A, Mu XJ, Gerstein M: Genomics and privacy: implications of the new reality of closed data for the field. PLoS Comput Biol 2011, 7(12):e1002278.
  • [70]Hudson KL: Genomics, health care, and society. N Engl J Med 2011, 365(11):1033-1041.
  • [71]Kaye J, Heeney C, Hawkins N, De Vries J, Boddington P: Data sharing in genomics–re-shaping scientific practice. Nat Rev Genet 2009, 10(5):331-335.
  • [72]Mcguire AL, Joffe S, Koenig BA, Biesecker BB, McCullough LB, Blumenthal-Barby JS, et al.: Point-counterpoint. Ethics and genomic incidental findings. Science 2013, 340(6136):1047-1048.
  • [73]Ponemon Institute. Fourth Annual Benchmark Study on Patient Privacy and Data Security. http://www2.idexpertscorp.com/ponemon-report-on-patient-privacy-data-security-incidents/.
  • [74]Tremaine DW, Blanchette KR, Greene AH and Williams RL. $4.8 Million – largest HIPAA settlement to date. May 2014. http://www.lexology.com/library/detail.aspx?g=d16341e1-05e5-4df0-820c-4687323a75dc.
  • [75]Ouellette P. Cogent Healthcare contractor M2ComSys breaches patient data. August 2013. http://healthitsecurity.com/2013/08/12/cogent-healthcare-contractor-m2comsys-breaches-patient-data/.
  • [76]Freemire J, Wieland JB. $1.5 Million OCR HIPAA Settlement Provides Notice of Increased Enforcement Focus on Mobile Device Security and Encryption. Bloomberg BNA Health IT Law & Industry Report. September 28, 2012.
  • [77]New Smartphone To Put Privacy And Control First. Press Release. February 10, 2014. https://www.blackphone.ch/new-smartphone-to-put-privacy-and-control-first/.
  • [78]Kaelber DC, Bates DW: Health information exchange and patient safety. J Biomed Inform 2007, 40(6 Suppl):S40-S45.
  • [79]Bisbal J, Berry D: An analysis framework for electronic health record systems. Interoperation and collaboration in shared healthcare. Methods Inf Med 2011, 50(2):180-189.
  • [80]Edsall RL, Adler KG: The 2012 EHR user satisfaction survey: responses from 3,088 family physicians. Fam Pract Manag 2012, 19(6):23-30.
  • [81]Kane L: EHR Report 2012: Physicians Rank Top EHRs. Medscape. 2012.
  • [82]Brookstone AJ, Underwood WS, Barr MS. Market Share and Top 10 Rated Ambulatory EHR products by practice size. AmericanEHR Partners, LLC. July 2011
  • [83]Nguyen AN, De J, Nguyen J, Padula A, Qu Z: A teaching database for diagnosis of hematologic neoplasms using immunophenotyping by flow cytometry. Arch Pathol Lab Med 2008, 132(5):829-837.
  • [84]Nguyen A, Wu S, Jalali M, Uthman M, Johnson K, Banez E: A web-based database for diagnosis of haematologic neoplasms using immunophenotyping by flow cytometry. Med Inform Internet Med 2001, 26(4):309-323.
  • [85]Montironi R, Ball RY, Griffiths DF, Grigor K, Harnden PM, Jarmulowicz M, et al.: Bayesian belief network for the Gleason patterns in prostatic adenocarcinoma: development of a diagnostic decision support system for educational purposes. Anal Quant Cytol Histol 2008, 30(1):8-15.
  • [86]Spyridonos P, Cavouras D, Ravazoula P, Nikiforidis G: A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence. Med Inform Internet Med 2002, 27(2):111-122.
  • [87]Henry JB, Kelly KC: Comprehensive graphic-based display of clinical pathology laboratory data. Am J Clin Pathol 2003, 119(3):330-336.
  • [88]Overbeek LI, Hermens RP, Van Krieken JH, Adang EM, Casparie M, Nagengast FM, et al.: Electronic reminders for pathologists promote recognition of patients at risk for Lynch syndrome: cluster-randomised controlled trial. Virchows Arch 2010, 456(6):653-659.
  • [89]Comaniciu D, Meer P, Foran DJ: Image-guided decision support system for pathology. Mach Vis Appl 1999, 11(4):213-224.
  • [90]Shah SP, Huang Y, Xu T, Yuen MM, Ling J, Ouellette BF: Atlas - a data warehouse for integrative bioinformatics. BMC Bioinformatics 2005, 6:34.
  • [91]Lee TJ, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert DW, Tenenbaum JD, et al.: BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinformatics 2006, 7(1):170.
  • [92]Trissl S, Rother K, Müller H, Steinke T, Koch I, Preissner R, et al.: Columba: an integrated database of proteins, structures, and annotations. BMC Bioinformatics 2005, 6(1):81.
  • [93]Choi C, Münch R, Leupold S, Klein J, Siegel I, Thielen B, et al.: SYSTOMONAS–an integrated database for systems biology analysis of Pseudomonas. Nucleic Acids Res 2007, 35(Database issue):D533-D537.
  • [94]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al.: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6(1):1-6.
  • [95]Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, et al.: BioMart–biological queries made easy. BMC Genomics 2009, 10:22.
  • [96]Köhler J, Baumbach J, Taubert J, Specht M, Skusa M, Skusa A, et al.: Graph-based analysis and visualization of experimental results with Ondex. Bioinformatics 2006, 22:11.
  • [97]Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, et al.: InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics 2012, 28(23):3163-3165.
  文献评价指标  
  下载次数:24次 浏览次数:17次