Journal of Neuroinflammation | |
Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro | |
Peter John Crack1  Juliet Marie Taylor1  Moses Zhang1  Kate Maree Brody1  Bevan Scott Main1  Myles Robert Minter1  | |
[1] Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne 3010, VIC, Australia | |
关键词: Alzheimer’s disease; Amyloid; IRF7; Myd88; Toll-like receptor; JAK-STAT; Cytokines; Neuro-inflammation; Type-1 interferon; | |
Others : 1227095 DOI : 10.1186/s12974-015-0263-2 |
|
received in 2014-12-03, accepted in 2015-02-09, 发布年份 2015 | |
【 摘 要 】
Background
Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer’s disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ.
Methods
Wildtype and Myd88−/− primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay.
Results
Reduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88−/− neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88−/− neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity.
Conclusions
This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity.
【 授权许可】
2015 Minter et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150927093713213.pdf | 2585KB | download | |
Figure 5. | 21KB | Image | download |
Figure 4. | 127KB | Image | download |
Figure 3. | 21KB | Image | download |
Figure 2. | 47KB | Image | download |
Figure 1. | 54KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI: Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986, 83:4913-7.
- [2]Selkoe DJ: Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 2001, 3:75-80.
- [3]Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006, 129:3006-19.
- [4]Apelt J, Schliebs R: Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 2001, 894:21-30.
- [5]Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A: Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 2008, 12:2255-62.
- [6]Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B: TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 1999, 13:63-8.
- [7]Hanisch UK: Microglia as a source and target of cytokines. Glia 2002, 40:140-55.
- [8]Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, et al.: IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 2013, 125:897-908.
- [9]Floden AM, Combs CK: Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci 2006, 26:4644-8.
- [10]Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al.: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493:674-8.
- [11]Taylor JM, Minter MR, Newman AG, Zhang M, Adlard PA, Crack PJ: Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer’s disease. Neurobiol Aging 2014, 35:1012-23.
- [12]Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, et al.: Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. J Immunol 2011, 187:2540-7.
- [13]Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al.: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458:514-8.
- [14]Downes CE, Crack PJ: Neural injury following stroke: are toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010, 160:1872-88.
- [15]Kawai T, Akira S: Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008, 1143:1-20.
- [16]Kawai T, Akira S: Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 2007, 13:460-9.
- [17]Nishimura M, Naito S: Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 2005, 28:886-92.
- [18]Mishra BB, Mishra PK, Teale JM: Expression and distribution of toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 2006, 181:46-56.
- [19]Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T: Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009, 87:181-94.
- [20]Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, et al.: LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 2005, 128:1778-89.
- [21]Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 2009, 29:11982-92.
- [22]Lim JE, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, et al.: MyD88 deficiency ameliorates beta-amyloidosis in an animal model of Alzheimer’s disease. Am J Pathol 2011, 179:1095-103.
- [23]Lim JE, Song M, Jin J, Kou J, Pattanayak A, Lalonde R, et al.: The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice. Behav Brain Res 2012, 227:36-42.
- [24]Michaud JP, Richard KL, Rivest S: MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegener 2011, 6:5. BioMed Central Full Text
- [25]Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 2008, 5:23. BioMed Central Full Text
- [26]Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, et al.: TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 2011, 8:92. BioMed Central Full Text
- [27]de Weerd NA, Nguyen T: The interferons and their receptors - distribution and regulation. Immunol Cell Biol 2012, 90:483-91.
- [28]Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol 2001, 1:135-45.
- [29]Barbalat R, Ewald SE, Mouchess ML, Barton GM: Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011, 29:185-214.
- [30]Kawai T, Akira S: Innate immune recognition of viral infection. Nat Immunol 2006, 7:131-7.
- [31]de Weerd NA, Samarajiwa SA, Hertzog PJ: Type I interferon receptors: biochemistry and biological functions. J Biol Chem 2007, 282:20053-7.
- [32]Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, et al.: Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 2010, 30:6873-81.
- [33]Honda K, Taniguchi T: IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006, 6:644-58.
- [34]Yang H, Lin CH, Ma G, Baffi MO, Wathelet MG: Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators. J Biol Chem 2003, 278:15495-504.
- [35]Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al.: Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 2014, 343:1246980.
- [36]Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al.: Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 2014, 346:89-93.
- [37]Ning S, Pagano JS, Barber GN: IRF7: activation, regulation, modification and function. Genes Immun 2011, 12:399-414.
- [38]Kim TW, Staschke K, Bulek K, Yao J, Peters K, Oh KH, et al.: A critical role for IRAK4 kinase activity in toll-like receptor-mediated innate immunity. J Exp Med 2007, 204:1025-36.
- [39]Koziczak-Holbro M, Joyce C, Gluck A, Kinzel B, Muller M, Tschopp C, et al.: IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and toll-like receptor 7-mediated signaling and gene expression. J Biol Chem 2007, 282:13552-60.
- [40]Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T, Semba K, et al.: TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 2009., 4Article ID e5674
- [41]Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, et al.: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004, 5:1061-8.
- [42]Marie I, Durbin JE, Levy DE: Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 1998, 17:6660-9.
- [43]Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N: Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 1998, 441:106-10.
- [44]Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, et al.: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998, 9:143-50.
- [45]Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, et al.: MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PLoS One 2013., 8Article ID e57948
- [46]Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, et al.: Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 2003, 278:42959-65.
- [47]Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al.: Cu(II) potentiation of Alzheimer Abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999, 274:37111-6.
- [48]Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al.: Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 2008, 59:43-55.
- [49]Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA: Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 2001, 123:5625-31.
- [50]Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, et al.: Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J Neurosci 2008, 28:11950-8.
- [51]Smith JP, Lal V, Bowser D, Cappai R, Masters CL, Ciccotosto GD: Stimulus pattern dependence of the Alzheimer’s disease amyloid-beta 42 peptide’s inhibition of long term potentiation in mouse hippocampal slices. Brain Res 2009, 1269:176-84.
- [52]Ciccotosto GD, Tew D, Curtain CC, Smith D, Carrington D, Masters CL, et al.: Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 2004, 279:42528-34.
- [53]Schmid AW, Freir DB, Herron CE: Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res 2008, 1197:135-42.
- [54]Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, et al.: Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide. Biochemistry 2007, 46:2881-91.
- [55]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-8.
- [56]Buttke TM, McCubrey JA, Owen TC: Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 1993, 157:233-40.
- [57]Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, et al.: TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 2012, 188:1098-107.
- [58]Gao M, London N, Cheng K, Tamura R, Jin J, Schueler-Furman O, et al.: Rationally designed macrocyclic peptides as synergistic agonists of LPS-induced inflammatory response. Tetrahedron 2014, 70:7664-8.
- [59]Oda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, et al.: Vizantin inhibits endotoxin-mediated immune responses via the TLR 4/MD-2 complex. J Immunol 2014, 193:4507-14.
- [60]Zhang YY, Fan YC, Wang M, Wang D, Li XH: Atorvastatin attenuates the production of IL-1beta, IL-6, and TNF-alpha in the hippocampus of an amyloid beta1-42-induced rat model of Alzheimer’s disease. Clin Interv Aging 2013, 8:103-10.
- [61]Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al.: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434:772-7.
- [62]Terry RD: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 1996, 55:1023-5.
- [63]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al.: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46:860-6.
- [64]Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al.: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 1999, 155:853-62.
- [65]Brun A, Englund E: Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981, 5:549-64.
- [66]Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982, 215:1237-9.
- [67]Owens T, Khorooshi R, Wlodarczyk A, Asgari N: Interferons in the central nervous system: a few instruments play many tunes. Glia 2014, 62:339-55.
- [68]Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, et al.: Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008, 213:114-21.
- [69]Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al.: CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010, 11:155-61.
- [70]Goll Y, Bekenstein U, Barbash S, Greenberg DS, Zangen R, Shoham S, et al.: Sustained Alzheimer’s amyloid pathology in myeloid differentiation protein-88-deficient APPswe/PS1 mice. Neuro-degenerative Diseases 2014, 13:58-60.
- [71]Hwang SY, Hur KY, Kim JR, Cho KH, Kim SH, Yoo JY: Biphasic RLR-IFN-beta response controls the balance between antiviral immunity and cell damage. J Immunol 2013, 190:1192-200.
- [72]Meylan E, Tschopp J: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 2006, 22:561-9.
- [73]Schneider K, Loewendorf A, De Trez C, Fulton J, Rhode A, Shumway H, et al.: Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe 2008, 3:67-76.
- [74]Erta M, Quintana A, Hidalgo J: Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012, 8:1254-66.
- [75]Frankola KA, Greig NH, Luo W, Tweedie D: Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & Neurol Disord Drug Targets 2011, 10:391-403.
- [76]Shaftel SS, Griffin WS, O’Banion MK: The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008, 5:7. BioMed Central Full Text
- [77]Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT: Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 2014, 8:315.
- [78]Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, et al.: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 2012, 150:606-19.
- [79]Lood C, Gullstrand B, Truedsson L, Olin AI, Alm GV, Ronnblom L, et al.: C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum 2009, 60:3081-90.
- [80]Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al.: LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 2003, 198:1043-55.
- [81]Ogasawara N, Sasaki M, Itoh Y, Tokudome K, Kondo Y, Ito Y, et al.: Rebamipide suppresses TLR-TBK1 signaling pathway resulting in regulating IRF3/7 and IFN-alpha/beta reduction. J Clin Biochem Nutr 2011, 48:154-60.
- [82]Richez C, Yasuda K, Watkins AA, Akira S, Lafyatis R, van Seventer JM, et al.: TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming. J Immunol 2009, 182:820-8.
- [83]Rajbhandari L, Tegenge MA, Shrestha S, Ganesh Kumar N, Malik A, Mithal A, et al.: Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 2014, 62:1982-91.
- [84]Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A, et al.: Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 2003, 306:860-6.
- [85]Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al.: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003, 4:491-6.
- [86]Sharma S: tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003, 300:1148-51.
- [87]Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C: Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis. Proc Natl Acad Sci U S A 1999, 96:9409-14.
- [88]Terai K, Matsuo A, McGeer PL: Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 1996, 735:159-68.
- [89]Moynagh PN: TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 2005, 26:469-76.
- [90]Acarin L, Gonzalez B, Castellano B: Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 2000, 12:3505-20.
- [91]Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al.: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405:458-62.
- [92]Tracey KJ: The inflammatory reflex. Nature 2002, 420:853-9.
- [93]Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al.: Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003, 421:384-8.
- [94]Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, Yang L, Valdes-Ferrer SI, Patel NB, et al.: The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med 2009, 15:195-202.
- [95]Andersson U, Tracey KJ: Reflex principles of immunological homeostasis. Annu Rev Immunol 2012, 30:313-35.
- [96]Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology. 2014;doi:10.1016/j.neuropharm.2014.11.018 [Epub].
- [97]Kolisnyk B, Al-Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, et al.: Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci Off J Soc Neurosci 2013, 33:14908-20.
- [98]Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al.: Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 2013, 218:59-72.
- [99]Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al.: Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 2013, 5:1613-34.
- [100]Zimmerman G, Shaltiel G, Barbash S, Cohen J, Gasho CJ, Shenhar-Tsarfaty S, et al.: Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFkappaB pathway. Transl Psychiatry 2012., 2Article ID e78