期刊论文详细信息
Journal of Neuroinflammation
Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro
Peter John Crack1  Juliet Marie Taylor1  Moses Zhang1  Kate Maree Brody1  Bevan Scott Main1  Myles Robert Minter1 
[1] Department of Pharmacology and Therapeutics, University of Melbourne, 8th floor, Medical building, Grattan St, Parkville, Melbourne 3010, VIC, Australia
关键词: Alzheimer’s disease;    Amyloid;    IRF7;    Myd88;    Toll-like receptor;    JAK-STAT;    Cytokines;    Neuro-inflammation;    Type-1 interferon;   
Others  :  1227095
DOI  :  10.1186/s12974-015-0263-2
 received in 2014-12-03, accepted in 2015-02-09,  发布年份 2015
PDF
【 摘 要 】

Background

Neuro-inflammation has long been implicated as a contributor to the progression of Alzheimer’s disease in both humans and animal models. Type-1 interferons (IFNs) are pleiotropic cytokines critical in mediating the innate immune pro-inflammatory response. The production of type-1 IFNs following pathogen detection is, in part, through the activation of the toll-like receptors (TLRs) and subsequent signalling through myeloid differentiation factor-88 (Myd88) and interferon regulatory factors (IRFs). We have previously identified that neuronal type-1 IFN signalling, through the type-1 interferon alpha receptor-1 (IFNAR1), is detrimental in models of AD. Using an in vitro approach, this study investigated the TLR network as a potential production pathway for neuronal type-1 IFNs in response to Aβ.

Methods

Wildtype and Myd88−/− primary cultured cortical and hippocampal neurons were treated with 2.5 μM Aβ1-42 for 24 to 72 h or 1 to 10 μM Aβ1-42 for 72 h. Human BE(2)M17 neuroblastoma cells stably expressing an IRF7 small hairpin RNA (shRNA) or negative control shRNA construct were subjected to 7.5 μM Aβ1-42/Aβ42-1 for 24 to 96 h, 2.5 to 15 μM Aβ1-42 for 96 h or 100 ng/ml LPS for 0.5 to 24 h. Q-PCR was used to analyse IFNα, IFNβ, IL-1β, IL-6 and TNFα mRNA transcript levels. Phosphorylation of STAT-3 was detected by Western blot analysis, and cell viability was assessed by MTS assay.

Results

Reduced IFNα, IFNβ, IL-1β, IL-6 and TNFα expression was detected in Aβ1-42-treated Myd88−/− neurons compared to wildtype cells. This correlated with reduced phosphorylation of STAT-3, a downstream type-1 IFN signalling mediator. Significantly, Myd88−/− neuronal cultures were protected against Aβ1-42-induced neurotoxicity compared to wildtype as determined by MTS assay. Knockdown of IRF7 in M17 cells was sufficient in blocking IFNα, IFNβ and p-STAT-3 induction to both Aβ1-42 and the TLR4 agonist LPS. M17 IRF7 KD cells were also protected against Aβ1-42-induced cytotoxicity.

Conclusions

This study confirms that the neuronal type-1 IFN response to soluble amyloid is mediated primarily through TLRs. This production is dependent upon Myd88 and IRF7 signalling. This study suggests that targeting this pathway to modulate neuronal type-1 IFN levels may be beneficial in controlling Aβ-induced neurotoxicity.

【 授权许可】

   
2015 Minter et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150927093713213.pdf 2585KB PDF download
Figure 5. 21KB Image download
Figure 4. 127KB Image download
Figure 3. 21KB Image download
Figure 2. 47KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI: Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986, 83:4913-7.
  • [2]Selkoe DJ: Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 2001, 3:75-80.
  • [3]Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006, 129:3006-19.
  • [4]Apelt J, Schliebs R: Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 2001, 894:21-30.
  • [5]Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A: Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 2008, 12:2255-62.
  • [6]Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B: TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 1999, 13:63-8.
  • [7]Hanisch UK: Microglia as a source and target of cytokines. Glia 2002, 40:140-55.
  • [8]Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, et al.: IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 2013, 125:897-908.
  • [9]Floden AM, Combs CK: Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci 2006, 26:4644-8.
  • [10]Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al.: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493:674-8.
  • [11]Taylor JM, Minter MR, Newman AG, Zhang M, Adlard PA, Crack PJ: Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer’s disease. Neurobiol Aging 2014, 35:1012-23.
  • [12]Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, et al.: Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. J Immunol 2011, 187:2540-7.
  • [13]Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al.: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009, 458:514-8.
  • [14]Downes CE, Crack PJ: Neural injury following stroke: are toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 2010, 160:1872-88.
  • [15]Kawai T, Akira S: Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008, 1143:1-20.
  • [16]Kawai T, Akira S: Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 2007, 13:460-9.
  • [17]Nishimura M, Naito S: Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 2005, 28:886-92.
  • [18]Mishra BB, Mishra PK, Teale JM: Expression and distribution of toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 2006, 181:46-56.
  • [19]Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T: Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009, 87:181-94.
  • [20]Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, et al.: LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 2005, 128:1778-89.
  • [21]Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE: CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 2009, 29:11982-92.
  • [22]Lim JE, Kou J, Song M, Pattanayak A, Jin J, Lalonde R, et al.: MyD88 deficiency ameliorates beta-amyloidosis in an animal model of Alzheimer’s disease. Am J Pathol 2011, 179:1095-103.
  • [23]Lim JE, Song M, Jin J, Kou J, Pattanayak A, Lalonde R, et al.: The effects of MyD88 deficiency on exploratory activity, anxiety, motor coordination, and spatial learning in C57BL/6 and APPswe/PS1dE9 mice. Behav Brain Res 2012, 227:36-42.
  • [24]Michaud JP, Richard KL, Rivest S: MyD88-adaptor protein acts as a preventive mechanism for memory deficits in a mouse model of Alzheimer’s disease. Mol Neurodegener 2011, 6:5. BioMed Central Full Text
  • [25]Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 2008, 5:23. BioMed Central Full Text
  • [26]Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, et al.: TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 2011, 8:92. BioMed Central Full Text
  • [27]de Weerd NA, Nguyen T: The interferons and their receptors - distribution and regulation. Immunol Cell Biol 2012, 90:483-91.
  • [28]Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol 2001, 1:135-45.
  • [29]Barbalat R, Ewald SE, Mouchess ML, Barton GM: Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011, 29:185-214.
  • [30]Kawai T, Akira S: Innate immune recognition of viral infection. Nat Immunol 2006, 7:131-7.
  • [31]de Weerd NA, Samarajiwa SA, Hertzog PJ: Type I interferon receptors: biochemistry and biological functions. J Biol Chem 2007, 282:20053-7.
  • [32]Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, et al.: Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 2010, 30:6873-81.
  • [33]Honda K, Taniguchi T: IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006, 6:644-58.
  • [34]Yang H, Lin CH, Ma G, Baffi MO, Wathelet MG: Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators. J Biol Chem 2003, 278:15495-504.
  • [35]Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al.: Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 2014, 343:1246980.
  • [36]Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al.: Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 2014, 346:89-93.
  • [37]Ning S, Pagano JS, Barber GN: IRF7: activation, regulation, modification and function. Genes Immun 2011, 12:399-414.
  • [38]Kim TW, Staschke K, Bulek K, Yao J, Peters K, Oh KH, et al.: A critical role for IRAK4 kinase activity in toll-like receptor-mediated innate immunity. J Exp Med 2007, 204:1025-36.
  • [39]Koziczak-Holbro M, Joyce C, Gluck A, Kinzel B, Muller M, Tschopp C, et al.: IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and toll-like receptor 7-mediated signaling and gene expression. J Biol Chem 2007, 282:13552-60.
  • [40]Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T, Semba K, et al.: TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 2009., 4Article ID e5674
  • [41]Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, et al.: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004, 5:1061-8.
  • [42]Marie I, Durbin JE, Levy DE: Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 1998, 17:6660-9.
  • [43]Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N: Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 1998, 441:106-10.
  • [44]Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, et al.: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998, 9:143-50.
  • [45]Downes CE, Wong CH, Henley KJ, Guio-Aguilar PL, Zhang M, Ates R, et al.: MyD88 is a critical regulator of hematopoietic cell-mediated neuroprotection seen after stroke. PLoS One 2013., 8Article ID e57948
  • [46]Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, et al.: Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 2003, 278:42959-65.
  • [47]Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al.: Cu(II) potentiation of Alzheimer Abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999, 274:37111-6.
  • [48]Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al.: Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 2008, 59:43-55.
  • [49]Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA: Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 2001, 123:5625-31.
  • [50]Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, et al.: Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J Neurosci 2008, 28:11950-8.
  • [51]Smith JP, Lal V, Bowser D, Cappai R, Masters CL, Ciccotosto GD: Stimulus pattern dependence of the Alzheimer’s disease amyloid-beta 42 peptide’s inhibition of long term potentiation in mouse hippocampal slices. Brain Res 2009, 1269:176-84.
  • [52]Ciccotosto GD, Tew D, Curtain CC, Smith D, Carrington D, Masters CL, et al.: Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 2004, 279:42528-34.
  • [53]Schmid AW, Freir DB, Herron CE: Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res 2008, 1197:135-42.
  • [54]Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, et al.: Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide. Biochemistry 2007, 46:2881-91.
  • [55]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-8.
  • [56]Buttke TM, McCubrey JA, Owen TC: Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 1993, 157:233-40.
  • [57]Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, et al.: TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 2012, 188:1098-107.
  • [58]Gao M, London N, Cheng K, Tamura R, Jin J, Schueler-Furman O, et al.: Rationally designed macrocyclic peptides as synergistic agonists of LPS-induced inflammatory response. Tetrahedron 2014, 70:7664-8.
  • [59]Oda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, et al.: Vizantin inhibits endotoxin-mediated immune responses via the TLR 4/MD-2 complex. J Immunol 2014, 193:4507-14.
  • [60]Zhang YY, Fan YC, Wang M, Wang D, Li XH: Atorvastatin attenuates the production of IL-1beta, IL-6, and TNF-alpha in the hippocampus of an amyloid beta1-42-induced rat model of Alzheimer’s disease. Clin Interv Aging 2013, 8:103-10.
  • [61]Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al.: IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005, 434:772-7.
  • [62]Terry RD: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 1996, 55:1023-5.
  • [63]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al.: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46:860-6.
  • [64]Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al.: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 1999, 155:853-62.
  • [65]Brun A, Englund E: Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981, 5:549-64.
  • [66]Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982, 215:1237-9.
  • [67]Owens T, Khorooshi R, Wlodarczyk A, Asgari N: Interferons in the central nervous system: a few instruments play many tunes. Glia 2014, 62:339-55.
  • [68]Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, et al.: Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008, 213:114-21.
  • [69]Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al.: CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010, 11:155-61.
  • [70]Goll Y, Bekenstein U, Barbash S, Greenberg DS, Zangen R, Shoham S, et al.: Sustained Alzheimer’s amyloid pathology in myeloid differentiation protein-88-deficient APPswe/PS1 mice. Neuro-degenerative Diseases 2014, 13:58-60.
  • [71]Hwang SY, Hur KY, Kim JR, Cho KH, Kim SH, Yoo JY: Biphasic RLR-IFN-beta response controls the balance between antiviral immunity and cell damage. J Immunol 2013, 190:1192-200.
  • [72]Meylan E, Tschopp J: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 2006, 22:561-9.
  • [73]Schneider K, Loewendorf A, De Trez C, Fulton J, Rhode A, Shumway H, et al.: Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe 2008, 3:67-76.
  • [74]Erta M, Quintana A, Hidalgo J: Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012, 8:1254-66.
  • [75]Frankola KA, Greig NH, Luo W, Tweedie D: Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & Neurol Disord Drug Targets 2011, 10:391-403.
  • [76]Shaftel SS, Griffin WS, O’Banion MK: The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008, 5:7. BioMed Central Full Text
  • [77]Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT: Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 2014, 8:315.
  • [78]Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, et al.: TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 2012, 150:606-19.
  • [79]Lood C, Gullstrand B, Truedsson L, Olin AI, Alm GV, Ronnblom L, et al.: C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum 2009, 60:3081-90.
  • [80]Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al.: LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 2003, 198:1043-55.
  • [81]Ogasawara N, Sasaki M, Itoh Y, Tokudome K, Kondo Y, Ito Y, et al.: Rebamipide suppresses TLR-TBK1 signaling pathway resulting in regulating IRF3/7 and IFN-alpha/beta reduction. J Clin Biochem Nutr 2011, 48:154-60.
  • [82]Richez C, Yasuda K, Watkins AA, Akira S, Lafyatis R, van Seventer JM, et al.: TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming. J Immunol 2009, 182:820-8.
  • [83]Rajbhandari L, Tegenge MA, Shrestha S, Ganesh Kumar N, Malik A, Mithal A, et al.: Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 2014, 62:1982-91.
  • [84]Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A, et al.: Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 2003, 306:860-6.
  • [85]Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al.: IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003, 4:491-6.
  • [86]Sharma S: tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003, 300:1148-51.
  • [87]Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C: Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis. Proc Natl Acad Sci U S A 1999, 96:9409-14.
  • [88]Terai K, Matsuo A, McGeer PL: Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 1996, 735:159-68.
  • [89]Moynagh PN: TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 2005, 26:469-76.
  • [90]Acarin L, Gonzalez B, Castellano B: Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 2000, 12:3505-20.
  • [91]Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al.: Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405:458-62.
  • [92]Tracey KJ: The inflammatory reflex. Nature 2002, 420:853-9.
  • [93]Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al.: Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003, 421:384-8.
  • [94]Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, Yang L, Valdes-Ferrer SI, Patel NB, et al.: The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med 2009, 15:195-202.
  • [95]Andersson U, Tracey KJ: Reflex principles of immunological homeostasis. Annu Rev Immunol 2012, 30:313-35.
  • [96]Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology. 2014;doi:10.1016/j.neuropharm.2014.11.018 [Epub].
  • [97]Kolisnyk B, Al-Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, et al.: Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci Off J Soc Neurosci 2013, 33:14908-20.
  • [98]Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al.: Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 2013, 218:59-72.
  • [99]Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al.: Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 2013, 5:1613-34.
  • [100]Zimmerman G, Shaltiel G, Barbash S, Cohen J, Gasho CJ, Shenhar-Tsarfaty S, et al.: Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFkappaB pathway. Transl Psychiatry 2012., 2Article ID e78
  文献评价指标  
  下载次数:4次 浏览次数:8次