Cilia | |
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins | |
Anand Swaroop1  Tiansen Li1  Rivka A Rachel1  | |
[1] Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA | |
关键词: Nephronophthisis; Joubert syndrome; Leber congenital amaurosis; Bardet–Biedl syndrome; RPGR; CEP290; Sensory cilia; Primary cilium; Retinal degeneration; Ciliopathy; | |
Others : 795458 DOI : 10.1186/2046-2530-1-22 |
|
received in 2012-07-25, accepted in 2012-09-19, 发布年份 2012 | |
【 摘 要 】
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins – CEP290 and RPGR – that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
【 授权许可】
2012 Rachel et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705091305641.pdf | 1967KB | download | |
Figure 3. | 114KB | Image | download |
Figure 2. | 99KB | Image | download |
Figure 1. | 148KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Jain R, Pan J, Driscoll JA, Wisner JW, Huang T, Gunsten SP, You Y, Brody SL: Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol 2010, 43:731-739.
- [2]Sorokin SP: Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 1968, 3:207-230.
- [3]Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK: The primary cilium as a complex signaling center. Curr Biol 2009, 19:R526-R535.
- [4]Taschner M, Bhogaraju S, Lorentzen E: Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2012, 83:S12-S22.
- [5]Wallingford JB, Mitchell B: Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011, 25:201-213.
- [6]Lee JE, Gleeson JG: A systems-biology approach to understanding the ciliopathy disorders. Genome Med 2011, 3:59. BioMed Central Full Text
- [7]Ishikawa H, Marshall WF: Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 2011, 12:222-234.
- [8]Silverman MA, Leroux MR: Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol 2009, 19:306-316.
- [9]Santos N, Reiter JF: Building it up and taking it down: the regulation of vertebrate ciliogenesis. Dev Dyn 2008, 237:1972-1981.
- [10]Pedersen LB, Rosenbaum JL: Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 2008, 85:23-61.
- [11]Gerdes JM, Katsanis N: Ciliary function and Wnt signal modulation. Curr Top Dev Biol 2008, 85:175-195.
- [12]Eggenschwiler JT, Anderson KV: Cilia and developmental signaling. Annu Rev Cell Dev Biol 2007, 23:345-373.
- [13]Dawe HR, Farr H, Gull K: Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 2007, 120(Pt 1):7-15.
- [14]Roy S: The motile cilium in development and disease: emerging new insights. BioEssays 2009, 31(7):694-699.
- [15]Hoey DA, Downs ME, Jacobs CR: The mechanics of the primary cilium: an intricate structure with complex function. J Biomech 2012, 45:17-26.
- [16]Van der Heiden K, Egorova AD, Poelmann RE, Wentzel JJ, Hierck BP: Role for primary cilia as flow detectors in the cardiovascular system. Int Rev Cell Mol Biol 2011, 290:87-119.
- [17]Sattar S, Gleeson JG: The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol 2011, 53:793-798.
- [18]Louvi A, Grove EA: Cilia in the CNS: the quiet organelle claims center stage. Neuron 2011, 69:1046-1060.
- [19]Kartagener M: Zur pathogenese der bronchiektasien: bronchiektasien bei situs viscerum inversus. Beitr Klin Tuberk 1933, 83:489-501.
- [20]Vague J, Farnarier G, G S: [Laurence–Moon–Bardet–Biedl syndrome]. Rev Otoneuroophtalmol 1950, 22:60-63.
- [21]Joubert M, Eisenring JJ, Andermann F: Familial dysgenesis of the vermis: a syndrome of hyperventilation, abnormal eye movements and retardation. Neurology 1968, 18:302-303.
- [22]Eley L, Yates LM, Goodship JA: Cilia and disease. Curr Opin Genet Dev 2005, 15:308-314.
- [23]Badano JL, Katsanis N: Life without centrioles: cilia in the spotlight. Cell 2006, 125:1228-1230.
- [24]Afzelius BA: Genetical and ultrastructural aspects of the immotile-cilia syndrome. Am J Hum Genet 1981, 33:852-864.
- [25]Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA: New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 1999, 36:437-446.
- [26]Waters AM, Beales PL: Bardet–Biedl syndrome. In GeneReviews. Edited by Pagon RA, Bird TD, Dolan CR, Stephens K. University of Washington; 2003. Jul 14 [updated 2011 Sep 29]
- [27]Parisi MA: Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet 2009, 151C:326-340.
- [28]Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, Wise EL, Wolf MT, Utsch B, Becker C, Nurnberg G, Nurnberg P, Nayir A, Saunier S, Antignac C, Hildebrandt F: Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet 2009, 46:663-670.
- [29]Sun X, Pawlyk B, Xu X, Liu X, Bulgakov OV, Adamian M, Sandberg MA, Khani SC, Tan MH, Smith AJ, Ali RR, Li T: Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther 2010, 17:117-131.
- [30]Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, Sayer JA, Otto EA, Attanasio M, O'Toole JF, Jin G, Shou C, Hildebrandt F, Williams DS, Heckenlively JR, Swaroop A: In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 2006, 15:1847-1857.
- [31]Rachel RA, May-Simera HL, Veleri S, Gotoh N, Choi BY, Murga-Zamalloa C, McIntyre JC, Marek J, Lopez I, Hackett AN, Brooks M, den Hollander AI, Beales PL, Li T, Jacobson SG, Sood R, Martens JR, Liu P, Friedman TB, Khanna H, Koenekoop RK, Kelley MW, Swaroop A: Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J Clin Investig 2012, 122:1233-1245.
- [32]Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H: Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res 2011, 30:258-274.
- [33]Ramamurthy V, Cayouette M: Development and disease of the photoreceptor cilium. Clin Genet 2009, 76:137-145.
- [34]Adams NA, Awadein A, Toma HS: The retinal ciliopathies. Ophthalmic Genet 2007, 28:113-125.
- [35]Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K: Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet–Biedl syndrome proteins. Cell Mol Life Sci 2011, 68:2951-2960.
- [36]Green JA, Mykytyn K: Neuronal ciliary signaling in homeostasis and disease. Cell Mol Life Sci 2010, 67:3287-3297.
- [37]Doherty D: Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009, 16:143-154.
- [38]Whitfield JF: The neuronal primary cilium – an extrasynaptic signaling device. Cell Signal 2004, 16:763-767.
- [39]Whitfield JF, Chakravarthy BR: The neuronal primary cilium: driver of neurogenesis and memory formation in the hippocampal dentate gyrus? Cell Signal 2009, 21:1351-1355.
- [40]Louie CM, Gleeson JG: Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 2005, 14:235-242.
- [41]Millen KJ, Gleeson JG: Cerebellar development and disease. Curr Opin Neurobiol 2008, 18:12-19.
- [42]Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A: Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 2008, 317:246-259.
- [43]Shiba D, Yokoyama T: The ciliary transitional zone and nephrocystins. Differentiation 2012, 83:S91-S96. Epub 2011 Dec 12
- [44]Winyard P, Jenkins D: Putative roles of cilia in polycystic kidney disease. Biochim Biophys Acta 2011, 1812:1256-1262.
- [45]Takiar V, Caplan MJ: Polycystic kidney disease: pathogenesis and potential therapies. Biochim Biophys Acta 2011, 1812:1337-1343.
- [46]D'Angelo A, Franco B: The primary cilium in different tissues-lessons from patients and animal models. Pediatr Nephrol 2011, 26:655-662.
- [47]Dalagiorgou G, Basdra EK, Papavassiliou AG: Polycystin-1: function as a mechanosensor. Int J BiochemCell Biol 2010, 42:1610-1613.
- [48]Hurd TW, Hildebrandt F: Mechanisms of nephronophthisis and related ciliopathies. Nephron Exp Nephrol 2011, 118:e9-e14.
- [49]Hildebrandt F, Attanasio M, Otto E: Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 2009, 20:23-35.
- [50]Lancaster MA, Louie CM, Silhavy JL, Sintasath L, Decambre M, Nigam SK, Willert K, Gleeson JG: Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med 2009, 15:1046-1054.
- [51]Gunay-Aygun M: Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet 2009, 151C:296-306.
- [52]Larusso NF, Masyuk TV: The role of cilia in the regulation of bile flow. Dig Dis 2011, 29:6-12.
- [53]Masyuk T, Masyuk A, LaRusso N: Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol 2009, 25:265-271.
- [54]Masyuk AI, Masyuk TV, LaRusso NF: Cholangiocyte primary cilia in liver health and disease. Dev Dyn 2008, 237:2007-2012.
- [55]Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, Larusso NF: Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008, 295:G725-G734.
- [56]Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF: Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 2007, 104:19138-19143.
- [57]Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF: Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006, 131:911-920.
- [58]Bimonte S, De Angelis A, Quagliata L, Giusti F, Tammaro R, Dallai R, Ascenzi MG, Diez-Roux G, Franco B: Ofd1 is required in limb bud patterning and endochondral bone development. Dev Biol 2011, 349:179-191.
- [59]Marion V, Stutzmann F, Gerard M, De Melo C, Schaefer E, Claussmann A, Helle S, Delague V, Souied E, Barrey C, Verloes A, Stoetzel C, Dollfus H: Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet–Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet 2012, 49:317-21. Epub 2012 Apr 17
- [60]Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K: Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 2008, 19:1540-1547.
- [61]Anderson CT, Castillo AB, Brugmann SA, Helms JA, Jacobs CR, Stearns T: Primary cilia: cellular sensors for the skeleton. Anat Rec 2008, 291:1074-1078.
- [62]Malone AM, Anderson CT, Stearns T, Jacobs CR: Primary cilia in bone. J MusculoskeletNeuronal Interact 2007, 7:301.
- [63]Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR: Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 2007, 104:13325-13330.
- [64]Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK: Intraflagellar transport is essential for endochondral bone formation. Development 2007, 134:307-316.
- [65]Liu A, Wang B, Niswander LA: Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005, 132:3103-3111.
- [66]Weatherbee SD, Niswander LA, Anderson KV: A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet 2009, 18:4565-4575.
- [67]Cattaneo I, Condorelli L, Terrinoni AR, Antiga L, Sangalli F, Remuzzi A: Shear stress reverses dome formation in confluent renal tubular cells. Cell Physiol Biochem 2011, 28:673-682.
- [68]Clement CA, Kristensen SG, Mollgard K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST: The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 2009, 122(Pt 17):3070-3082.
- [69]You Y, Huang T, Richer EJ, Schmidt JE, Zabner J, Borok Z, Brody SL: Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004, 286:L650-L657.
- [70]Patel AC, Brody SL, Stappenbeck TS, Holtzman MJ: Tracking cell lineage to rediscover (again) the switch from ciliated to mucous cells. Amer J Respir Cell Mol Biol 2011, 44:261-263.
- [71]Brody SL, Yan XH, Wuerffel MK, Song SK, Shapiro SD: Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 2000, 23:45-51.
- [72]Horner VL, Caspary T: Disrupted dorsal neural tube BMP signaling in the cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev Biol 2011, 355:43-54.
- [73]Murdoch JN, Copp AJ: The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res A Clin Mol Teratol 2010, 88:633-652.
- [74]Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL: Disruption of Bardet–Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005, 37:1135-1140.
- [75]Yang J, Liu X, Zhao Y, Adamian M, Pawlyk B, Sun X, McMillan DR, Liberman MC, Li T: Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss. PLoS Genet 2010, 6:e1000955.
- [76]Peters KR, Palade GE, Schneider BG, Papermaster DS: Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. J Cell Biol 1983, 96:265-276.
- [77]Ghossoub R, Molla-Herman A, Bastin P, Benmerah A: The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011, 103:131-144.
- [78]Otto EA, Hurd TW, Airik R, Chaki M, Zhou W, Stoetzel C, Patil SB, Levy S, Ghosh AK, Murga-Zamalloa CA, van Reeuwijk J, Letteboer SJ, Sang L, Giles RH, Liu Q, Coene KL, Estrada-Cuzcano A, Collin RW, McLaughlin HM, Held S, Kasanuki JM, Ramaswami G, Conte J, Lopez I, Washburn J, Macdonald J, Hu J, Yamashita Y, Maher ER, Guay-Woodford LM, et al.: Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal–renal ciliopathy. Nat Genet 2010, 42:840-850.
- [79]Omori Y, Chaya T, Katoh K, Kajimura N, Sato S, Muraoka K, Ueno S, Koyasu T, Kondo M, Furukawa T: Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci U S A 2010, 107:22671-22676.
- [80]Hong DH, Yue G, Adamian M, Li T: Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 2001, 276(15):12091-12099.
- [81]Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA, Ali RR, Li T: Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 2005, 46:3039-3045.
- [82]Zhao Y, Hong DH, Pawlyk B, Yue G, Adamian M, Grynberg M, Godzik A, Li T: The retinitis pigmentosa GTPase regulator (RPGR)-interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci U S A 2003, 100:3965-3970.
- [83]Westfall JE, Hoyt C, Liu Q, Hsiao YC, Pierce EA, Page-McCaw PS, Ferland RJ: Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J Neurosci 2010, 30:8759-8768.
- [84]Holopainen JM, Cheng CL, Molday LL, Johal G, Coleman J, Dyka F, Hii T, Ahn J, Molday RS: Interaction and localization of the retinitis pigmentosa protein RP2 and NSF in retinal photoreceptor cells. Biochemistry 2010, 49:7439-7447.
- [85]Boldt K, Mans DA, Won J, van Reeuwijk J, Vogt A, Kinkl N, Letteboer SJ, Hicks WL, Hurd RE, Naggert JK, Texier Y, den Hollander AI, Koenekoop RK, Bennett J, Cremers FP, Gloeckner CJ, Nishina PM, Roepman R, Ueffing M: Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J Clin Invest 2011, 121:2169-2180.
- [86]Chuang JZ, Zhao Y, Sung CH: SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 2007, 130(3):535-547.
- [87]Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, Lupski JR, Beales PL, Reed RR, Katsanis N: Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 2004, 36(9):994-998.
- [88]Sedmak T, Wolfrum U: Intraflagellar transport molecules in ciliary and nonciliary cells of the retina. J Cell Biol 2010, 189:171-186.
- [89]Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB, Sumaroka A, Roman AJ, Stone EM, Jacobson SG, Swaroop A: Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum Mol Genet 2011, 20:1411-1423.
- [90]McEwen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A, Martens JR: Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A 2007, 104:15917-15922.
- [91]Murga-Zamalloa CA, Ghosh AK, Patil SB, Reed NA, Chan LS, Davuluri S, Peranen J, Hurd TW, Rachel RA, Khanna H: Accumulation of the Raf-1 kinase inhibitory protein (Rkip) is associated with Cep290-mediated photoreceptor degeneration in ciliopathies. J Biol Chem 2011, 286:28276-28286.
- [92]Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, Wright AF, Arshavsky VY, Li T: RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 2003, 44:2413-2421.
- [93]Brunner S, Skosyrski S, Kirschner-Schwabe R, Knobeloch KP, Neidhardt J, Feil S, Glaus E, Luhmann UF, Ruther K, Berger W: Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci 2010, 51:1106-1115.
- [94]Hong DH, Pawlyk BS, Adamian M, Sandberg MA, Li T: A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci 2005, 46:435-441.
- [95]Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci U S A 2000, 97:3649-3654.
- [96]Hosch J, Lorenz B, Stieger K: RPGR: role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genet 2011, 32:1-11.
- [97]Kirschner R, Rosenberg T, Schultz-Heienbrok R, Lenzner S, Feil S, Roepman R, Cremers FP, Ropers HH, Berger W: RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa. Hum Mol Genet 1999, 8:1571-1578.
- [98]Mavlyutov TA, Zhao H, Ferreira PA: Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species. Hum Mol Genet 2002, 11:1899-1907.
- [99]Murga-Zamalloa C, Swaroop A, Khanna H: Multiprotein complexes of Retinitis Pigmentosa GTPase regulator (RPGR), a ciliary protein mutated in X-linked Retinitis Pigmentosa (XLRP). Adv Exp Med Biol 2010, 664:105-114.
- [100]Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Marker T, Voesenek K, Kartono A, Ozyurek H, Farin FM, Kroes HY, Wolfrum U, Brunner HG, Cremers FP, Glass IA, Knoers NV, Roepman R: Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 2007, 39:882-888.
- [101]Brancati F, Travaglini L, Zablocka D, Boltshauser E, Accorsi P, Montagna G, Silhavy JL, Barrano G, Bertini E, Emma F, Rigoli L, Dallapiccola B, Gleeson JG, Valente EM: RPGRIP1L mutations are mainly associated with the cerebello-renal phenotype of Joubert syndrome-related disorders. Clin Genet 2008, 74:164-170.
- [102]Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K, Golzio C, Lacoste T, Besse L, Ozilou C, Moutkine I, Hellman NE, Anselme I, Silbermann F, Vesque C, Gerhardt C, Rattenberry E, Wolf MT, Gubler MC, Martinovic J, Encha-Razavi F, Boddaert N, Gonzales M, Macher MA, Nivet H, Champion G, Bertheleme JP, Niaudet P, McDonald F, Hildebrandt F, et al.: The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 2007, 39:875-881.
- [103]Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI, Zonneveld MN, Othman MI, Waseem N, Chakarova CF, Maubaret C, Diaz-Font A, MacDonald I, Muzny DM, Wheeler DA, Morgan M, Lewis LR, Logan CV, Tan PL, Beer MA, Inglehearn CF, Lewis RA, Jacobson SG, Bergmann C, Beales PL, Attie-Bitach T, Johnson CA, Otto EA, Bhattacharya SS, Hildebrandt F, et al.: A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 2009, 41:739-745.
- [104]Liu L, Zhang M, Xia Z, Xu P, Chen L, Xu T: Caenorhabditis elegans ciliary protein NPHP-8, the homologue of human RPGRIP1L, is required for ciliogenesis and chemosensation. Biochem Biophys Res Commun 2011, 410:626-631.
- [105]Wolf MT, Saunier S, O'Toole JF, Wanner N, Groshong T, Attanasio M, Salomon R, Stallmach T, Sayer JA, Waldherr R, Griebel M, Oh J, Neuhaus TJ, Josefiak U, Antignac C, Otto EA, Hildebrandt F: Mutational analysis of the RPGRIP1L gene in patients with Joubert syndrome and nephronophthisis. Kidney Int 2007, 72:1520-1526.
- [106]Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC: The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 2002, 157:103-113.
- [107]Sukumaran S, Perkins BD: Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 intraflagellar transport mutants. Vision Res 2009, 49:479-489.
- [108]Tsujikawa M, Malicki J: Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 2004, 42:703-716.
- [109]Whitehead JL, Wang SY, Bost-Usinger L, Hoang E, Frazer KA, Burnside B: Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina. Exp Eye Res 1999, 69:491-503.
- [110]Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E, Korenke GC, Fabretti F, Janecke AR, Ebermann I, Nurnberg G, Nurnberg P, Zentgraf H, Koerber F, Addicks K, Elsobky E, Benzing T, Schermer B, Bolz HJ: Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J Clin Invest 2011, 121:2662-2667.
- [111]Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, Beachy PA, Beales PL, DeMartino GN, Fisher S, Badano JL, Katsanis N: Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 2007, 39:1350-1360.
- [112]Pretorius PR, Baye LM, Nishimura DY, Searby CC, Bugge K, Yang B, Mullins RF, Stone EM, Sheffield VC, Slusarski DC: Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLoS Genet 2010, 6:e1000884.
- [113]Kim JC, Ou YY, Badano JL, Esmail MA, Leitch CC, Fiedrich E, Beales PL, Archibald JM, Katsanis N, Rattner JB, Leroux MR: MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet–Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci 2005, 118(Pt 5):1007-1020.
- [114]Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, Mah AK, Johnsen RC, Cavender JC, Lewis RA, Leroux MR, Beales PL, Katsanis N: Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 2003, 425:628-633.
- [115]Lim YS, Chua CE, Tang BL: Rabs and other small GTPases in ciliary transport. Biol Cell 2011, 103:209-221.
- [116]Liu X, Bulgakov OV, Darrow KN, Pawlyk B, Adamian M, Liberman MC, Li T: Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 2007, 104:4413-4418.
- [117]Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T: Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol 2002, 159:431-440.
- [118]Wright RN, Hong DH, Perkins B: RpgrORF15 connects to the Usher protein network through direct interactions with multiple whirlin isoforms. Invest Ophthalmol Vis Sci 2012, 53:1519-29. Print 2012 Mar
- [119]Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL, Lupski JR: Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 2001, 293:2256-2259.
- [120]Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA: Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 2010, 47:8-21.
- [121]Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, Alfadhel M, Lewis RA, Eyaid W, Banin E, Dollfus H, Beales PL, Badano JL, Katsanis N: Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat Genet 2008, 40:443-448.
- [122]Karska-Basta I, Kubicka-Trzaska A, Filemonowicz-Skoczek A, Romanowska-Dixon B, Kobylarz J: Alstrom syndrome – a case report and literature review. Klin Oczna 2008, 110:188-192.
- [123]Helou J, Otto EA, Attanasio M, Allen SJ, Parisi MA, Glass I, Utsch B, Hashmi S, Fazzi E, Omran H, O'Toole JF, Sayer JA, Hildebrandt F: Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Loken syndrome. Journal of Medical Genetics 2007, 44(10):657-663.
- [124]Roepman R, Letteboer SJ, Arts HH, van Beersum SE, Lu X, Krieger E, Ferreira PA, Cremers FP: Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc Natl Acad Sci U S A 2005, 102:18520-18525.
- [125]Stone EM, Cideciyan AV, Aleman TS, Scheetz TE, Sumaroka A, Ehlinger MA, Schwartz SB, Fishman GA, Traboulsi EI, Lam BL, Fulton AB, Mullins RF, Sheffield VC, Jacobson SG: Variations in NPHP5 in patients with nonsyndromic leber congenital amaurosis and Senior–Loken syndrome. Arch Ophthalmol 2011, 129:81-87.
- [126]Casteels I, Demandt E, Legius E: Visual loss as the presenting sign of Jeune syndrome. Eur J Paediatr Neurol 2000, 4:243-247.
- [127]den Hollander AI, Roepman R, Koenekoop RK, Cremers FP: Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008, 27:391-419.
- [128]Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG, Meindl A, Meitinger T, Ciccodicola A, Wright AF: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 2000, 25:462-466.
- [129]Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ, Asaye B, Acar C, Vervoort R, Wright AF, Musarella MA, Wheeler P, MacDonald I, Iannaccone A, Birch D, Hoffman DR, Fishman GA, Heckenlively JR, Jacobson SG, Sieving PA, Swaroop A: A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 2002, 70:1545-1554.
- [130]Jimeno D, Feiner L, Lillo C, Teofilo K, Goldstein LS, Pierce EA, Williams DS: Analysis of kinesin-2 function in photoreceptor cells using synchronous Cre-loxP knockout of Kif3a with RHO-Cre. Invest Ophthalmol Vis Sci 2006, 47:5039-5046.
- [131]Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, Goldstein LS: Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 2000, 102:175-187.
- [132]Won J, Shi LY, Hicks W, Wang J, Hurd R, Naggert JK, Chang B, Nishina PM: Mouse model resources for vision research. J Ophthalmol 2011, 391384. Epub 2010 Oct 31
- [133]Liu Q, Saveliev A, Pierce EA: The severity of retinal degeneration in Rp1h gene-targeted mice is dependent on genetic background. Invest Ophthalmol Vis Sci 2009, 50:1566-1574.
- [134]Liu J, Huang Q, Higdon J, Liu W, Xie T, Yamashita T, Cheon K, Cheng C, Zuo J: Distinct gene expression profiles and reduced JNK signaling in retinitis pigmentosa caused by RP1 mutations. Hum Mol Genet 2005, 14:2945-2958.
- [135]Gao J, Cheon K, Nusinowitz S, Liu Q, Bei D, Atkins K, Azimi A, Daiger SP, Farber DB, Heckenlively JR, Pierce EA, Sullivan LS, Zuo J: Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Proc Natl Acad Sci U S A 2002, 99:5698-5703.
- [136]Schwartz SB, Aleman TS, Cideciyan AV, Swaroop A, Jacobson SG, Stone EM: De novo mutation in the RP1 gene (Arg677ter) associated with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2003, 44:3593-3597.
- [137]Cideciyan AV, Aleman TS, Jacobson SG, Khanna H, Sumaroka A, Aguirre GK, Schwartz SB, Windsor EA, He S, Chang B, Stone EM, Swaroop A: Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum Mutat 2007, 28:1074-1083.
- [138]Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Grone HJ, Lopez I, Gudiseva HV, O'Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FP, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG: AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 2010, 42:175-180.
- [139]Lancaster MA, Gopal DJ, Kim J, Saleem SN, Silhavy JL, Louie CM, Thacker BE, Williams Y, Zaki MS, Gleeson JG: Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 2011, 17:726-731.
- [140]Collin GB, Won J, Hicks WL, Cook SA, Nishina PM, Naggert JK: Meckelin is necessary for photoreceptor intraciliary transport and outer segment morphogenesis. Invest Ophthalmol Vis Science 2012, 53:967-974. Print 2012 Feb
- [141]Bhowmick R, Li M, Sun J, Baker SA, Insinna C, Besharse JC: Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic 2009, 10:648-663.
- [142]Liem KF Jr: He M, Ocbina PJ, Anderson KV: Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A 2009, 106:13377-13382.
- [143]Chapple JP, Hardcastle AJ, Grayson C, Spackman LA, Willison KR, Cheetham ME: Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum Mol Genet 2000, 9:1919-1926.
- [144]Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME: The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Genet 2010, 19:1358-1367.
- [145]Hurd T, Zhou W, Jenkins P, Liu CJ, Swaroop A, Khanna H, Martens J, Hildebrandt F, Margolis B: The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development. Hum Mol Genet 2010, 19:4330-4344.
- [146]Won J, Gifford E, Smith RS, Yi H, Ferreira PA, Hicks WL, Li T, Naggert JK, Nishina PM: RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum Mol Genet 2009, 18:4329-4339.
- [147]Pawlyk BS, Bulgakov OV, Liu X, Xu X, Adamian M, Sun X, Khani SC, Berson EL, Sandberg MA, Li T: Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther 2010, 21:993-1004.
- [148]Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, Garcia-Verdugo JM, Katsanis N, Hildebrandt F, Reiter JF: A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 2011, 43:776-784.
- [149]Thompson DA, Khan NW, Othman MI, Chang B, Jia L, Grahek G, Wu Z, Hiriyanna S, Nellissery J, Li T, Khanna H, Colosi P, Swaroop A, Heckenlively JR: Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PloS One 2012, 7:e35865.
- [150]Huang WC, Wright AF, Roman AJ, Cideciyan AV, Manson FD, Gewaily DY, Schwartz SB, Sadigh S, Limberis MP, Bell P, Wilson JM, Swaroop A, Jacobson SG: RPGR-associated retinal degeneration in human X-linked RP and a murine model. Invest Ophthalmol Vis Sci 2012, 53:5594-5608. Print 2012 Sep
- [151]Jagger D, Collin G, Kelly J, Towers E, Nevill G, Longo-Guess C, Benson J, Halsey K, Dolan D, Marshall J, Naggert J, Forge A: Alstrom syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity. Hum Mol Genet 2011, 20:466-481.
- [152]Huang-Doran I, Semple RK: Knockdown of the Alstrom syndrome-associated gene Alms1 in 3 T3-L1 preadipocytes impairs adipogenesis but has no effect on cell-autonomous insulin action. Int J Obesity 2010, 34:1554-1558.
- [153]Arsov T, Silva DG, O'Bryan MK, Sainsbury A, Lee NJ, Kennedy C, Manji SS, Nelms K, Liu C, Vinuesa CG, de Kretser DM, Goodnow CC, Petrovsky N: Fat aussie – a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol 2006, 20:1610-1622.
- [154]Collin GB, Cyr E, Bronson R, Marshall JD, Gifford EJ, Hicks W, Murray SA, Zheng QY, Smith RS, Nishina PM, Naggert JK: Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet 2005, 14:2323-2333.
- [155]Zhang Q, Nishimura D, Seo S, Vogel T, Morgan DA, Searby C, Bugge K, Stone EM, Rahmouni K, Sheffield VC: Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc Natl Acad Sci U S A 2011, 108:20678-20683. Epub 2011 Dec 2
- [156]Davis RE, Swiderski RE, Rahmouni K, Nishimura DY, Mullins RF, Agassandian K, Philp AR, Searby CC, Andrews MP, Thompson S, Berry CJ, Thedens DR, Yang B, Weiss RM, Cassell MD, Stone EM, Sheffield VC: A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S A 2007, 104:19422-19427.
- [157]Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, Andorf JL, Mykytyn K, Swiderski RE, Yang B, Carmi R, Stone EM, Sheffield VC: Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 2004, 101:16588-16593.
- [158]Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, Nishimura DY, Sheffield VC: Leptin resistance contributes to obesity and hypertension in mouse models of Bardet–Biedl syndrome. J Clin Invest 2008, 118:1458-1467.
- [159]Abd-El-Barr MM, Sykoudis K, Andrabi S, Eichers ER, Pennesi ME, Tan PL, Wilson JH, Katsanis N, Lupski JR, Wu SM: Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet–Biedl syndrome. Vis Res 2007, 47:3394-3407.
- [160]Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC: Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci U S A 2004, 101:8664-8669.
- [161]Simons DL, Boye SL, Hauswirth WW, Wu SM: Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet–Biedl syndrome mouse model. Proc Natl Acad Sci U S A 2011, 108:6276-6281.
- [162]Tadenev AL, Kulaga HM, May-Simera HL, Kelley MW, Katsanis N, Reed RR: Loss of Bardet–Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci U S A 2011, 108:10320-10325.
- [163]Fath MA, Mullins RF, Searby C, Nishimura DY, Wei J, Rahmouni K, Davis RE, Tayeh MK, Andrews M, Yang B, Sigmund CD, Stone EM, Sheffield VC: Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Hum Mol Genet 2005, 14:1109-1118.
- [164]Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A: The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 2007, 448:366-369.
- [165]Kudryashova E, Wu J, Havton LA, Spencer MJ: Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum Mol Genet 2009, 18:1353-1367.
- [166]Brancati F, Barrano G, Silhavy JL, Marsh SE, Travaglini L, Bielas SL, Amorini M, Zablocka D, Kayserili H, Al-Gazali L, Bertini E, Boltshauser E, D'Hooghe M, Fazzi E, Fenerci EY, Hennekam RC, Kiss A, Lees MM, Marco E, Phadke SR, Rigoli L, Romano S, Salpietro CD, Sherr EH, Signorini S, Stromme P, Stuart B, Sztriha L, Viskochil DH, Yuksel A, et al.: CEP290 mutations are frequently identified in the oculo-renal form of Joubert syndrome-related disorders. Am J Hum Genet 2007, 81:104-113.
- [167]Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, Bertini E, Dallapiccola B, Gleeson JG: Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 2006, 38:623-625.
- [168]Coppieters F, Lefever S, Leroy BP, De Baere E: CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 2010, 31:1097-1108.
- [169]Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E: Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 2010, 31:E1709-E1766.
- [170]Morecroft I, Doyle B, Nilsen M, Kolch W, Mair K, Maclean MR: Mice lacking the Raf-1 kinase inhibitor protein exhibit exaggerated hypoxia-induced pulmonary hypertension. Br J Pharmacol 2011, 163:948-963.
- [171]Iannaccone A, Wang X, Jablonski MM, Kuo SF, Baldi A, Cosgrove D, Morton CC, Swaroop A: Increasing evidence for syndromic phenotypes associated with RPGR mutations. Am J Ophthalmol 2004, 137:785-786. author reply 786
- [172]Shu X, Black GC, Rice JM, Hart-Holden N, Jones A, O'Grady A, Ramsden S, Wright AF: RPGR mutation analysis and disease: an update. Hum Mutat 2007, 28:322-328.
- [173]Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, Bhattacharya SS, Webster AR, Holder GE, Bird AC, Bamiou DE, Hardcastle AJ: RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003, 40:609-615.
- [174]Schmid F, Glaus E, Cremers FP, Kloeckener-Gruissem B, Berger W, Neidhardt J: Mutation- and tissue-specific alterations of RPGR transcripts. Invest Ophthalmol Vis Sci 2010, 51:1628-1635.
- [175]Hong DH, Li T: Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers. Invest Ophthalmol Vis Sci 2002, 43:3373-3382.
- [176]He S, Parapuram SK, Hurd TW, Behnam B, Margolis B, Swaroop A, Khanna H: Retinitis Pigmentosa GTPase Regulator (RPGR) protein isoforms in mammalian retina: insights into X-linked Retinitis Pigmentosa and associated ciliopathies. Vision Res 2008, 48:366-376.
- [177]Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, Carvalho MR, Achatz H, Hellebrand H, Lennon A, Migliaccio C, Porter K, Zrenner E, Bird A, Jay M, Lorenz B, Wittwer B, D'Urso M, Meitinger T, Wright A: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 1996, 13:35-42.
- [178]Yan D, Swain PK, Breuer D, Tucker RM, Wu W, Fujita R, Rehemtulla A, Burke D, Swaroop A: Biochemical characterization and subcellular localization of the mouse retinitis pigmentosa GTPase regulator (mRpgr). J Biol Chem 1998, 273:19656-19663.
- [179]Iannaccone A, Breuer DK, Wang XF, Kuo SF, Normando EM, Filippova E, Baldi A, Hiriyanna S, MacDonald CB, Baldi F, Cosgrove D, Morton CC, Swaroop A, Jablonski MM: Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet 2003, 40:e118.
- [180]Sharon D, Sandberg MA, Rabe VW, Stillberger M, Dryja TP, Berson EL: RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet 2003, 73:1131-1146.
- [181]Ocbina PJ, Eggenschwiler JT, Moskowitz I, Anderson KV: Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 2011, 43:547-553.
- [182]Friedman TB, Schultz JM, Ahmed ZM, Tsilou ET, Brewer CC: Usher syndrome: hearing loss with vision loss. Adv Otorhinolaryngol 2011, 70:56-65.
- [183]Murga-Zamalloa CA, Swaroop A, Khanna H: RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction. J Genet 2009, 88:399-407.
- [184]Travaglini L, Brancati F, Attie-Bitach T, Audollent S, Bertini E, Kaplan J, Perrault I, Iannicelli M, Mancuso B, Rigoli L, Rozet JM, Swistun D, Tolentino J, Dallapiccola B, Gleeson JG, Valente EM, Zankl A, Leventer R, Grattan-Smith P, Janecke A, D'Hooghe M, Sznajer Y, Van Coster R, Demerleir L, Dias K, Moco C, Moreira A, Kim CA, Maegawa G, Petkovic D, et al.: Expanding CEP290 mutational spectrum in ciliopathies. Am J Med Genet A 2009, 149A:2173-2180.
- [185]Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, Heckenlively JR, Otto EA, Hildebrandt F: Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int 2011, 80:1239-1245.
- [186]Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC: BBS proteins interact genetically with the IFT pathway to influence SHH related phenotypes. Hum Mol Genet 2012, 21:1945-1953. Epub 2012 Jan 6
- [187]Badano JL, Kim JC, Hoskins BE, Lewis RA, Ansley SJ, Cutler DJ, Castellan C, Beales PL, Leroux MR, Katsanis N: Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet–Biedl patients with two mutations at a second BBS locus. Hum Mol Genet 2003, 12:1651-1659.
- [188]Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, Mein CA, Froguel P, Scambler PJ, Lewis RA, Lupski JR, Katsanis N: Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet–Biedl syndrome. Am J Hum Genet 2003, 72:1187-1199.
- [189]Bin J, Madhavan J, Ferrini W, Mok CA, Billingsley G, Heon E: BBS7 and TTC8 (BBS8) mutations play a minor role in the mutational load of Bardet–Biedl syndrome in a multiethnic population. Hum Mutat 2009, 30:E737-E746.
- [190]Katsanis N, Eichers ER, Ansley SJ, Lewis RA, Kayserili H, Hoskins BE, Scambler PJ, Beales PL, Lupski JR: BBS4 is a minor contributor to Bardet–Biedl syndrome and may also participate in triallelic inheritance. Am J Hum Genet 2002, 71:22-29.
- [191]Takeda S, Narita K: Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 2011, 83:S4-S11. Epub 2011 Nov 25
- [192]Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007, 129:1201-1213.
- [193]Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, et al.: Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011, 145:513-528.
- [194]van Reeuwijk J, Arts HH, Roepman R: Scrutinizing ciliopathies by unraveling ciliary interaction networks. Hum Mol Genet 2011, 20(R2):R149-R157.