Cell Communication and Signaling | |
GPR91: expanding the frontiers of Krebs cycle intermediates | |
M. Fatima Leite1  Rafael N. Gingold1  Joao Antônio da Rocha Franco1  Carla J. Aguiar2  Matheus de Castro Fonseca1  | |
[1] Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte CEP: 31270-901, MG, Brazil;Centro Universitário Estácio de Sá, Belo Horizonte, MG, Brazil | |
关键词: Cell signaling; Cell functions; GPR91; Succinate; | |
Others : 1235282 DOI : 10.1186/s12964-016-0126-1 |
|
received in 2015-10-19, accepted in 2016-01-04, 发布年份 2016 | |
【 摘 要 】
Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed.
【 授权许可】
2016 de Castro Fonseca et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160113031023433.pdf | 1747KB | download | |
Fig. 5. | 53KB | Image | download |
Fig. 4. | 74KB | Image | download |
Fig. 3. | 75KB | Image | download |
Fig. 2. | 96KB | Image | download |
Fig. 1. | 25KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Thunberg T. Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen. Enzyme Skandinavisches Archiv für Physiologie. 1920; 40:1-91.
- [2]Annan G, Banga I, Blazsó A, Bruckner V, Laki K, Straub B et al.. Über die Bedeutung der Fumarsäure für die tierische Gewebeatmung. Einleitung, übersicht, Methoden Hoppe-Seyler's Zeitschrift für Physiologische Chemie. 1935; 236:1-20.
- [3]Krebs HA, Johson WA. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia. 1937; 4:148-156.
- [4]Krebs HA. The history of the tricarboxylic acid cyle. Perspect Biol Med. 1970; 14:154-170.
- [5]Fedotcheva NI, Sokolov AP, Kondrashova MN. Nonenzymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med. 2006; 41:56-64.
- [6]Brosnan JT, Krebs HA, Williamson DH. Effects of Ischaemia on Metabolite Concentrations in Rat Liver. Biochent J. 1970; 117:91-96.
- [7]Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res. 1978; 43:808-815.
- [8]Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL et al.. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515(7527):431-5.
- [9]Knauf F, Rogina B, Jiang Z, Aronson PS, Helfand SL. Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci U S A. 2002; 99:14315-14319.
- [10]Inoue K, Fei YJ, Zhuang L, Gopal E, Miyauchi S, Ganapathy V. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem J. 2004; 378:949-957.
- [11]He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J et al.. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004; 429(6988):188-93.
- [12]Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012; 00022:1664-2392.
- [13]Bhuniya D, Umrani D, Dave B, Salunke D, Kukreja G, Gundu J et al.. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett. 2011; 21(12):3596-602.
- [14]Hakak Y, Lehmann-Bruinsma K, Phillips S, Le T, Liaw C, Connolly DT et al.. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol. 2009; 85:837-843.
- [15]Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C et al.. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal. 2014; 12(1):78. BioMed Central Full Text
- [16]Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F et al.. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008; 118:2526-2534.
- [17]Vargas SL, Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 2009; 20(5):1002-1011.
- [18]Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J, Deen PM et al.. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 2009; 76(12):1258-1267.
- [19]Correa PRAV, Krulog EA, Thompsom M, Leite MF, Dranoff JA, Nathanson M. Succinate is a paracrine signal for liver damage. J Hepatology. 2007; 47:262-269.
- [20]Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH et al.. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008; 14(10):1067-1076.
- [21]Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido- Perrig N et al.. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008; 9:1261-1269.
- [22]Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M, Burns P et al.. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 2007; 109:3260-3269.
- [23]Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000; 275(4):2247-2250.
- [24]Li YH, Woo SH, Choi DH, Cho EH. Succinate causes a-SMA production through GPR91 activation in hepatic stellate cells. Biochem Biophys Res Commun. 2015; 463:853-858.
- [25]Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol. 1990; 259:393-404.
- [26]Folbergrova J, Ljunggren B, Norberg K, Siesjo BK. Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res. 1974; 80:265-279.
- [27]Hoyer S, Krier C. Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging. 1986; 7:23-29.
- [28]Joyal JS, Sitaras N, Binet F, Rivera JC, Stahl A, Zaniolo K et al.. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 2011; 117:6024-6035.
- [29]Hu J, Wu Q, Li T, Chen Y, Wang S. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein-coupled receptor 91. Exp Eye Res. 2013; 109:31-39.
- [30]Hu J, Li T, Du S, Chen Y, Wang S, Xiong F et al.. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int J Mol Med. 2015; 36(1):130-138.
- [31]Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y et al.. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens. 2007; 20(11):1209-1215.
- [32]McCreath KJ, Espada S, Gálvez BG, Benito M, de Molina A, Sepúlveda P et al.. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes. 2015; 64(4):1154-1167.
- [33]Aguiar CJ, Andrade VL, Gomes ER, Alves MN, Ladeira MS, Pinheiro AC et al.. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 2010; 47(1):37-46.
- [34]Zucker AR, Gondolesi GE, Abbott MA, Decker R, Rosengren SS, Fishbein TM. Liver-intestine transplant from a pediatric donor with unrecognized mitochondrial succinate cytochrome C reductase deficiency. Transplantation. 2005; 79(3):356-358.
- [35]Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007; 166:867-870.