期刊论文详细信息
Cell & Bioscience
Biologically active, high levels of interleukin-22 inhibit hepatic gluconeogenesis but do not affect obesity and its metabolic consequences
Bin Gao4  George Kunos1  Douglas Osei-Hyiaman1  Joseph Tam2  Dechun Feng4  Hua Wang4  Mingjiang Xu4  Sung Hwan Ki3  Ogyi Park4 
[1] Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda 20892, MD, USA;Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;Laboratory of Toxicology, College of Pharmacy, Chosun University, Gwangju, South Korea;Laboratory of Liver Diseases, NIAAA/NIH, 5625 Fishers Lane, Bethesda 20892, MD, USA
关键词: Liver;    Cytokine;    Hyperglycemia;    Insulin resistance;    Obesity;   
Others  :  1224960
DOI  :  10.1186/s13578-015-0015-0
 received in 2015-03-24, accepted in 2015-05-14,  发布年份 2015
【 摘 要 】

Background

Interleukin-22 (IL-22), a cytokine with important functions in anti-microbial defense and tissue repair, has been recently suggested to have beneficial effects in obesity and metabolic syndrome in some but not in other studies. Here, we re-examined the effects of IL-22 on obesity, insulin resistance, and hepatic glucose metabolism.

Results

Genetic deletion of IL-22 did not affect high-fat-diet (HFD)-induced obesity and insulin resistance. IL-22 transgenic mice with relatively high levels of circulating IL-22 (~600 pg/ml) were completely resistant to Concanavalin A-induced liver injury but developed the same degree of high fat diet (HFD)-induced obesity, insulin resistance, and fatty liver as the wild-type littermate controls. Similarly, chronic treatment with recombinant mouse IL-22 (rmIL-22) protein did not affect HFD-induced obesity and the associated metabolic syndrome. In vivo treatment with a single dose of rmIL-22 downregulated the hepatic expression of gluconeogenic genes and subsequently inhibited hepatic gluconeogenesis and reduced blood glucose levels both in HFD-fed and streptozotocin (STZ)-treated mice without affecting insulin production. In vitro exposure of mouse primary hepatocytes to IL-22 suppressed glucose production and the expression of gluconeogenic genes. These inhibitory effects were partially reversed by blocking STAT3 or the AMPK signaling pathway.

Conclusion

Biologically active, high levels of IL-22 do not affect obesity and the associated metabolic syndrome. Acute treatment with IL-22 inhibits hepatic gluconeogenesis, which is mediated via the activation of STAT3 and AMPK in hepatocytes.

【 授权许可】

   
2015 Park et al.; licensee BioMed Central.

附件列表
Files Size Format View
Fig. 7. 66KB Image download
Fig. 6. 51KB Image download
Fig. 5. 110KB Image download
Fig. 4. 18KB Image download
Fig. 3. 133KB Image download
Fig. 2. 65KB Image download
Fig. 1. 37KB Image download
Fig. 7. 66KB Image download
Fig. 6. 51KB Image download
Fig. 5. 110KB Image download
Fig. 4. 18KB Image download
Fig. 3. 133KB Image download
Fig. 2. 65KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008; 28:454-67.
  • [2]Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011; 12:383-90.
  • [3]Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol. 2010; 32:17-31.
  • [4]Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov. 2014; 13:21-38.
  • [5]Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013; 252:116-32.
  • [6]Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol. 2011; 23:159-63.
  • [7]Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, Gao B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012; 56:1150-9.
  • [8]Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004; 39:1332-42.
  • [9]Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007; 27:647-59.
  • [10]Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, Gao B. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010; 52:1291-300.
  • [11]Muhl H, Scheiermann P, Bachmann M, Hardle L, Heinrichs A, Pfeilschifter J. IL-22 in tissue-protective therapy. Br J Pharmacol. 2013; 169:761-71.
  • [12]Sertorio M, Hou X, Carmo RF, Dessein H, Cabantous S, Abdelwahed M, Romano A, Albuquerque F, Vasconcelos L, Carmo T et al.. Interleukin-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology. 2015; 61:1321-31.
  • [13]Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP, Barilla R, Deutsch M, Greco SH, Ochi A et al.. Interleukin 17-producing gammadeltaT cells promote hepatic regeneration in mice. Gastroenterology. 2014; 147:473-84.
  • [14]Park O, Wang H, Weng H, Feigenbaum L, Li H, Yin S, Ki SH, Yoo SH, Dooley S, Wang FS et al.. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology. 2011; 54:252-61.
  • [15]Waidmann O, Kronenberger B, Scheiermann P, Koberle V, Muhl H, Piiper A. Interleukin-22 serum levels are a negative prognostic indicator in patients with hepatocellular carcinoma. Hepatology. 2014; 59:1207.
  • [16]Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, Wang X, Sun B. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. 2011; 54:900-9.
  • [17]Zhao J, Zhang Z, Luan Y, Zou Z, Sun Y, Li Y, Jin L, Zhou C, Fu J, Gao B et al.. Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology. 2014; 59:1331-42.
  • [18]Liang SC, Nickerson-Nutter C, Pittman DD, Carrier Y, Goodwin DG, Shields KM, Lambert AJ, Schelling SH, Medley QG, Ma HL et al.. IL-22 induces an acute-phase response. J Immunol. 2010; 185:5531-8.
  • [19]Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, Zhang J, Lesch J, Lee WP, Ross J et al.. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature. 2014; 514:237-41.
  • [20]Hasnain SZ, Borg DJ, Harcourt BE, Tong H, Sheng YH, Ng CP, Das I, Wang R, Chen AC, Loudovaris T et al.. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med. 2014; 20:1417-26.
  • [21]Yang L, Zhang Y, Wang L, Fan F, Zhu L, Li Z, Ruan X, Huang H, Wang Z, Huang Z et al.. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol. 2010; 53:339-47.
  • [22]Upadhyay V, Poroyko V, Kim TJ, Devkota S, Fu S, Liu D, Tumanov AV, Koroleva EP, Deng L, Nagler C et al.. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat Immunol. 2012; 13:947-53.
  • [23]Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV, Clement K et al.. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014; 63:1966-77.
  • [24]Dalmas E, Donath MY. A role for interleukin-22 in the alleviation of metabolic syndrome. Nat Med. 2014; 20:1379-81.
  • [25]Jiang W, Su J, Zhang X, Cheng X, Zhou J, Shi R, Zhang H. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm Res. 2014; 63:943-50.
  • [26]Shimauchi T, Hirakawa S, Suzuki T, Yasuma A, Majima Y, Tatsuno K, Yagi H, Ito T, Tokura Y. Serum interleukin-22 and vascular endothelial growth factor serve as sensitive biomarkers but not as predictors of therapeutic response to biologics in patients with psoriasis. J Dermatol. 2013; 40:805-12.
  • [27]Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA, Chen Z, Finck BN, Han DH, Magkos F et al.. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013; 145:366-74.
  • [28]Petersen PS, Lei X, Seldin MM, Rodriguez S, Byerly MS, Wolfe A, Whitlock S, Wong GW. Dynamic and extensive metabolic state-dependent regulation of cytokine expression and circulating levels. Am J Physiol Regul Integr Comp Physiol. 2014; 307:R1458-70.
  • [29]Feng D, Wang Y, Wang H, Weng H, Kong X, Martin-Murphy BV, Li Y, Park O, Dooley S, Ju C, Gao B. Acute and chronic effects of IL-22 on acetaminophen-induced liver injury. J Immunol. 2014; 193:2512-8.
  • [30]Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X, Zheng M, Zakhari S, Kolls JK, Gao B. Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci. 2012; 8:249-57.
  • [31]Xue J, Nguyen DT, Habtezion A. Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology. 2012; 143:1670-80.
  • [32]Sabat R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010; 21:315-24.
  • [33]Matthys P, Billiau A. Cytokines and cachexia. Nutrition. 1997; 13:763-70.
  • [34]Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, Hashimoto N, Kido Y, Mori T, Sakaue H et al.. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004; 10:168-74.
  • [35]Taniguchi CM, Kondo T, Sajan M, Luo J, Bronson R, Asano T, Farese R, Cantley LC, Kahn CR. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. Cell Metab. 2006; 3:343-53.
  • [36]Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009; 9:407-16.
  • [37]MacLeod JN, Shapiro BH. Repetitive blood sampling in unrestrained and unstressed mice using a chronic indwelling right atrial catheterization apparatus. Lab Anim Sci. 1988; 38:603-8.
  • [38]Youn JH, Kim JK, Buchanan TA. Time courses of changes in hepatic and skeletal muscle insulin action and GLUT4 protein in skeletal muscle after STZ injection. Diabetes. 1994; 43:564-71.
  • [39]Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010; 120:2355-69.
  文献评价指标  
  下载次数:75次 浏览次数:3次