期刊论文详细信息
Genome Biology
Sustained-input switches for transcription factors and microRNAs are central building blocks of eukaryotic gene circuits
Uwe Ohler2  Sayan Mukherjee1  Molly Megraw3 
[1] Department of Mathematics, Duke University, 120 Science Drive, Durham, NC 27708, USA;Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany;Department of Botany and Plant Pathology, Oregon State University, 2701 SW Campus Way, Corvallis, OR, USA
关键词: transcription factor;    network motif;    microRNA;    gene regulation;   
Others  :  864100
DOI  :  10.1186/gb-2013-14-8-r85
 received in 2013-07-13, accepted in 2013-08-23,  发布年份 2013
PDF
【 摘 要 】

WaRSwap is a randomization algorithm that for the first time provides a practical network motif discovery method for large multi-layer networks, for example those that include transcription factors, microRNAs, and non-regulatory protein coding genes. The algorithm is applicable to systems with tens of thousands of genes, while accounting for critical aspects of biological networks, including self-loops, large hubs, and target rearrangements. We validate WaRSwap on a newly inferred regulatory network from Arabidopsis thaliana, and compare outcomes on published Drosophila and human networks. Specifically, sustained input switches are among the few over-represented circuits across this diverse set of eukaryotes.

【 授权许可】

   
2013 Megraw et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725080949363.pdf 1040KB PDF download
56KB Image download
35KB Image download
25KB Image download
77KB Image download
42KB Image download
72KB Image download
137KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jothi R, Balaji S, Wuster A, Grochow J, Gsponer J, Przytycka T, Aravind L, Babu M: Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology 2009, 5:294.
  • [2]Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5:101-113.
  • [3]Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8:450-461.
  • [4]Iwama H, Murao K, Imachi H, Ishida T: MicroRNA networks alter to conform to transcription factor networks adding redundancy and reducing the repertoire of target genes for coordinated regulation. Molecular Biology and Evolution 2011, 28:639-646.
  • [5]Axtell MJ, Westholm JO, Lai EC: Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011, 12:221.
  • [6]Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A: MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011, 43:854-859.
  • [7]Hobert O: Gene regulation by transcription factors and microRNAs. Science 2008, 319:1785-1786.
  • [8]Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell 2007, 26:753-767.
  • [9]Shen-Orr S, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 2002, 31:64-68.
  • [10]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002, 298:824-827.
  • [11]King OD: Comment on 'Subgraphs in random networks'. Physical Review E 2004, 70:058101.
  • [12]Diaconis PaB, Joseph : A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math 2010, 6:489-522.
  • [13]Bezakova I, Bhatnagar N, Vigoda E: Sampling binary contingency tables with a greedy start. Random Structures and Algorithms 2007, 30:168-205.
  • [14]A sequential algorithm for generating random graphs [http://arxiv.org/abs/cs/0702124] webcite
  • [15]Fusco D, Bassetti B, Jona P, Cosentino : DIA-MCIS: an importance sampling network randomizer for network motif discovery and other topological observables in transcription networks. Bioinformatics 2007, 23:3388-3390.
  • [16]Chen Y, Diaconis P, Holmes S, Liu J: Sequential Monte Carlo methods for statistical analysis of tables. Journal of the American Statistical Association 2005, 100:109-120.
  • [17]Wernicke S, Rasche F: FANMOD: a tool for fast network motif detection. Bioinformatics 2006, 22:1152-1153.
  • [18]Yu X, Lin J, Zack D, Mendell J, Qian J: Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucl Acids Res 2008, 36:6494-6503.
  • [19]Shalgi R, Lieber D, Oren M, Pilpel Y: Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 2007, 3:e131.
  • [20]Milo R, Kashtan N, Itzkovitz S, Newman MEJ, Alon U: On the uniform generation of random graphs with prescribed degree sequences. 2004.
  • [21]Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC Mathematical & Computational Biology; 2006.
  • [22]Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007, 8:93-103.
  • [23]Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla E: A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. The Plant cell 2004, 16:2923-2939.
  • [24]Cederholm H, Iyer-Pascuzzi A, Benfey P: Patterning the primary root in Arabidopsis. WIREs Dev Biol 2012.
  • [25]Perales M, Reddy V: Stem cell maintenance in shoot apical meristems. Current Opinion in Plant Biology 2012, 15:10-16.
  • [26]Jönsson H, Gruel J, Krupinski P, Troein C: On evaluating models in computational morphodynamics. Current Opinion in Plant Biology 2012, 15:103-110.
  • [27]Scanner Toolset for Transcription Factor Binding Site Discovery [http://megraw.cgrb.oregonstate.edu/software/TFBS-Scan/] webcite
  • [28]The mod EC, Roy S, Ernst J, Kharchenko P, Kheradpour P, Negre N, Eaton M, Landolin J, Bristow C, Ma L, Lin M, Washietl S, Arshinoff B, Ay F, Meyer P, Robine N, Washington N, Di Stefano L, Berezikov E, Brown C, Candeias R, Carlson J, Carr A, Jungreis I, Marbach D, Sealfon R, Tolstorukov M, Will S, Alekseyenko A, Artieri C, et al.: Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 2010, 330:1787-1797.
  • [29]Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 2012, 489:91-100.
  • [30]Cheng C, Yan K-K, Hwang W, Qian J, Bhardwaj N, Rozowsky J, Lu Z, Niu W, Alves P, Kato M, Snyder M, Gerstein M: Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLoS Comput Biol 2011, 7:e1002190.
  • [31]Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic acids research 2003, 31:374-378.
  • [32]Berger M, Philippakis A, Qureshi A, He F, Estep P, Bulyk M: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotech 2006, 24:1429-1435.
  • [33]Brady S, Zhang L, Megraw M, Martinez N, Jiang E, Yi C, Liu W, Zeng A, Taylor-Teeples M, Kim D, Ahnert S, Ohler U, Ware D, Walhout A, Benfey P: A stele-enriched gene regulatory network in the Arabidopsis root. Molecular Systems Biology 2011, 7.
  • [34]WaRSwap Algorithm Code [http://megraw.cgrb.oregonstate.edu/software/WaRSwap] webcite
  • [35]Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal Complex System s 2006, 1695.
  • [36]Jaiswal P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L, Cartinhour S, Stein L, McCouch S: Gramene: development and integration of trait and gene ontologies for rice. Comparative and functional genomics 2002, 3:132-136.
  • [37]Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC, Zhong YF, Gu X, He K, Luo J: PlantTFDB: a comprehensive plant transcription factor database. Nucl Acids Res 2008, 36:966-969.
  • [38]Stormo G: DNA binding sites: representation and discovery. Bioinformatics 2000, 16:16-23.
  • [39]Megraw M, Hatzigeorgiou A: MicroRNA promoter analysis. Methods Mol Biol 2010, 592:149-161.
  • [40]Lee J-Y, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN: Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 2006.
  • [41]Breakfield N, Corcoran D, Petricka J, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey P: High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Research 2012, 22:163-176.
  • [42]Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC: Expression of Arabidopsis miRNA genes. Plant Physiol 2005, 138:2145-2154.
  • [43]WMD3 Web microRNA Designer [http://wmd3.weigelworld.org/cgi-bin/webapp.cgi?page=About;project=stdwmd] webcite
  • [44]Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D: Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18:1121-1133.
  • [45]Ossowski S, Schwab R, Weigel D: Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 2008, 53:674-690.
  文献评价指标  
  下载次数:114次 浏览次数:5次