Genome Biology | |
The strength of genetic interactions scales weakly with mutational effects | |
Jeff Gore1  Andrea Velenich1  | |
[1] Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA | |
关键词: Yeast; Genetic interactions; Fitness landscapes; Evolution; Epistasis; | |
Others : 864139 DOI : 10.1186/gb-2013-14-7-r76 |
|
received in 2013-02-11, accepted in 2013-07-26, 发布年份 2013 | |
【 摘 要 】
Background
Genetic interactions pervade every aspect of biology, from evolutionary theory, where they determine the accessibility of evolutionary paths, to medicine, where they can contribute to complex genetic diseases. Until very recently, studies on epistatic interactions have been based on a handful of mutations, providing at best anecdotal evidence about the frequency and the typical strength of genetic interactions. In this study, we analyze a publicly available dataset that contains the growth rates of over five million double knockout mutants of the yeast Saccharomyces cerevisiae.
Results
We discuss a geometric definition of epistasis that reveals a simple and surprisingly weak scaling law for the characteristic strength of genetic interactions as a function of the effects of the mutations being combined. We then utilized this scaling to quantify the roughness of naturally occurring fitness landscapes. Finally, we show how the observed roughness differs from what is predicted by Fisher's geometric model of epistasis, and discuss the consequences for evolutionary dynamics.
Conclusions
Although epistatic interactions between specific genes remain largely unpredictable, the statistical properties of an ensemble of interactions can display conspicuous regularities and be described by simple mathematical laws. By exploiting the amount of data produced by modern high-throughput techniques, it is now possible to thoroughly test the predictions of theoretical models of genetic interactions and to build informed computational models of evolution on realistic fitness landscapes.
【 授权许可】
2013 Velenich et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725082240336.pdf | 3965KB | download | |
31KB | Image | download | |
32KB | Image | download | |
25KB | Image | download | |
30KB | Image | download | |
72KB | Image | download | |
40KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Phillips PC: Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 2008, 9:855-867.
- [2]Weinreich DM, Delaney NF, DePristo MA, Hartl DL: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 2006, 312:111-114.
- [3]Dettman JR, Sirjusingh C, Kohn LM, Anderson JB: Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 2007, 447:585-588.
- [4]Hoh J, Ott J: Mathematical multi-locus approaches to localizing complex human trait genes. Nat Rev Genet 2003, 4:701-709.
- [5]Mackay TFC, Stone EA, Ayroles JF: The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 2009, 10:565-577.
- [6]Jansen RC: Studying complex biological systems using multifactorial perturbation. Nat Rev Genet 2003, 4:145-151.
- [7]Gros PA, Le Nagard H, Tenaillon O: The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 2009, 182:277-293.
- [8]Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF: Negative epistasis between mutations in an evolving bacterial population. Science 2011, 332:1193-1196.
- [9]Wilke CO, Adami C: Interaction between directional epistasis and average mutational effects. Proc R Soc Lond B Biol Sci 2001, 268:1469-1474.
- [10]Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski R: Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol 2007, 7:60-73. BioMed Central Full Text
- [11]Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z-Y, Liang W, Marback M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk N, et al.: The genetic landscape of a cell. Science 2010, 327:425-431.
- [12]Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C: Systematic mapping of genetic interaction networks. Annu Rev Genet 2009, 43:601-625.
- [13]Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn J-Y, Ou J, San Luis B-J, Bandyopadhyay S, Hibbs M, Hess D, Gingras A-C, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL: Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 2010, 7:1017-1024.
- [14]Mani R, StOnge RP, Hartman JL, Giaever G, Roth FP: Defining genetic interaction. Proc Natl Acad Sci USA 2008, 105:3461-3466.
- [15]Tan L, Gore J: Slowly switching between environments facilitates reverse evolution in small populations. Evolution 2012, 66:3144-3154.
- [16]Peters AD, Lively CM: Epistasis and the maintenance of sex. In Epistasis and the evolutionary process. Edited by Wolf JB, Brodie ED, Wade MJ. Oxford: Oxford University Press; 2000:99-112.
- [17]Martin G, Elena SF, Lenormand T: Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet 2007, 39:555-560.
- [18]Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ: Diminishing return epistasis among beneficial mutations decelerates adaptation. Science 2011, 332:1190-1192.
- [19]Fisher RA: The Genetical Theory of Natural Selection. Oxford: Clarendon Press; 1930.
- [20]Weinreich DM, Watson RA, Chao L: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 2005, 59:1165-1174.
- [21]Weissman DB, Desai MM, Fisher DS, Feldman MW: The rate at which asexual populations cross fitness valleys. Theor Pop Biol 2009, 75:286-300.
- [22]Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans ST: Empirical fitness landscapes reveal accessible evolutionry paths. Nature 2007, 445:383-386.
- [23]Velenich A, Gore J: Synthetic approaches to understanding biological constrains. Curr Opin Chem Biol 2012, 16:323-328.
- [24]Eyre-Walker A, Keightley PD: The distribution of fitness effects of new mutations. Nat Rev Genet 2007, 8:610-618.
- [25]Tan L, Serene S, Chao HX, Gore J: Hidden randomness between fitness landscapes limits reverse evolution. Phys Rev Lett 2011, 106:198102.
- [26]Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE: Second-order selection for evolvability in a large Escherichia coli population. Science 2011, 331:1433-1436.
- [27]Orr HA: The population genetics of adaptation the distribution of factors fixed during adaptive evolution. Evolution 1998, 52:935-949.
- [28]Orr HA: The genetic theory of adaptation a brief history. Nat Rev Genet 2005, 6:119-127.
- [29]Kryazhimskiy S, Tkčik G, Plotkin JB: The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci USA 2009, 106:18638-18643.
- [30]Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS: A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 2008, 5:711-718.
- [31]Xu L, Barker B, Gu Z: Dynamic epistasis for different alleles of the same gene. Proc Natl Acad Sci USA 2012, 109:10420-10425.
- [32]Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR: The synthetic genetic interaction spectrum of essential genes. Nat Genet 2005, 37:1147-1152.
- [33]Barabási AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5:101-113.
- [34]The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.
- [35]Dixon SJ, Fedyshyn Y, Koh JLY, Keshava Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe K-L, Kim D-U, Park H-O, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C: Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci USA 2008, 105:16653-16658.
- [36]Tischler J, Lehner B, Fraser AG: Evolutionary plasticity of genetic interaction networks. Nat Genet 2008, 40:390-391.
- [37]Harrison R, Papp B, Pál C, Oliver SG, Delneri D: Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA 2007, 104:2307-2312.
- [38]Wagner A: Gene duplications robustness and evolutionary innovations. BioEssays 2008, 30:367-373.
- [39]Wagner A: Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 2005, 27:176-188.
- [40]Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park H-O, Hayles J, Hoe K-L, Kim D-U, Ideker T, Grewal SI, Weissman JS, Krogan NJ: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 2008, 322:405-410.
- [41]Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 2006, 440:87-90.
- [42]Segrè D, DeLuna A, Church GM, Kishony R: Modular epistasis in yeast metabolism. Nat Genet 2005, 37:77-83.
- [43]He X, Qian W, Wang Z, Li Y, Zhang J: Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 2010, 42:272-276.
- [44]Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, Gelius-Dietrich G, Lercher MJ, Jelasity M, Myers CL, Andrews BJ, Boone C, Oliver SG, Pál C, Papp B: An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 2011, 43:656-662.
- [45]Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL: Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 2004, 427:839-843.
- [46]Sanjuán R, Elena SF: Epistasis correlates to genomic complexity. Proc Natl Acad Sci USA 2006, 103:14402-14405.
- [47]Sanjuán R, Nebot MR: A network model for the correlation between epistasis and genomic complexity. PLoS One 2008, 3:e2663.
- [48]Wood K, Nishida S, Sontag ED, Cluzel P: Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proc Natl Acad Sci USA 2012, 109:12254-12259.
- [49]The Genetic Landscape of the Cell. [http://drygin.ccbr.utoronto.ca/~costanzo2009] webcite
- [50]Gore Laboratory. [http://www.gorelab.org/software.html] webcite
- [51]Gene Ontology. GO Database Downloads. [http://www.geneontology.org/GO.downloads.database.shtml] webcite