期刊论文详细信息
Journal of Ovarian Research
MicroRNAs and ovarian function
Julang Li1  Jason Baley1 
[1] Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
关键词: small RNA;    ovaries;    gene regulation;    microRNA;   
Others  :  815144
DOI  :  10.1186/1757-2215-5-8
 received in 2011-11-29, accepted in 2012-02-09,  发布年份 2012
PDF
【 摘 要 】

MicroRNAs (miRNAs) are a class of small non-coding RNAs which function in gene regulation with an important role in cell proliferation, maturation, and activity. The regulatory role of these small RNA molecules has recently begun to be explored in ovarian cells, uncovering their influence on gonadal development, steroidogenesis, apoptosis, ovulation, and corpus luteum development. This emerging area of research has extended and reshaped our understanding on how ovarian function is regulated. Here, we review the current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of miRNA involvement in ovarian development and function. Future comprehensive understanding of the role of miRNAs in the ovary in both physiological and pathological conditions may offer new treatment strategies for infertility and other ovarian disorders.

【 授权许可】

   
2012 Baley and Li; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710055437238.pdf 371KB PDF download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
  • [2]Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2007, 96(Suppl):R40-44.
  • [3]Williams AH, Liu N, van Rooij E, Olson EN: MicroRNA control of muscle development and disease. Curr Opin Cell Biol 2009, 21:461-469.
  • [4]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [5]Zamore PD, Haley B: Ribo-gnome: the big world of small RNAs. Science 2005, 309:1519-1524.
  • [6]Zeng Y: Principles of micro-RNA production and maturation. Oncogene 2006, 25:6156-6162.
  • [7]Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009, 11:228-234.
  • [8]Cuellar TL, McManus MT: MicroRNAs and endocrine biology. J Endocrinol 2005, 187:327-332.
  • [9]Ruby JG, Jan CH, Bartel DP: Intronic microRNA precursors that bypass Drosha processing. Nature 2007, 448:83-86.
  • [10]Davis BN, Hata A: Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal 2009, 7:18. BioMed Central Full Text
  • [11]Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC: Mammalian mirtron genes. Mol Cell 2007, 28:328-336.
  • [12]Shomron N, Levy C: MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J Biomed Biotechnol 2009, 2009:594678.
  • [13]Carthew RW, Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136:642-655.
  • [14]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
  • [15]Xie ZR, Yang HT, Liu WC, Hwang MJ: The role of microRNA in the delayed negative feedback regulation of gene expression. Biochem Biophys Res Commun 2007, 358:722-726.
  • [16]Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005, 37:766-770.
  • [17]Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 2005, 123:1133-1146.
  • [18]Hutvagner G, Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297:2056-2060.
  • [19]Zeng Y, Cullen BR: Sequence requirements for micro RNA processing and function in human cells. RNA 2003, 9:112-123.
  • [20]Doench JG, Petersen CP, Sharp PA: siRNAs can function as miRNAs. Genes Dev 2003, 17:438-442.
  • [21]Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, Sun SY: Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia 2010, 12:848-855.
  • [22]Nissan T, Parker R: Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 2008, 14:1480-1491.
  • [23]Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N: MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 2007, 317:1764-1767.
  • [24]Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z: An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 2007, 129:1141-1151.
  • [25]Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318:1931-1934.
  • [26]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103:2257-2261.
  • [27]Nelson LR, Bulun SE: Estrogen production and action. J Am Acad Dermatol 2001, 45:S116-124.
  • [28]Jamnongjit M, Gill A, Hammes SR: Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci USA 2005, 102:16257-16262.
  • [29]Gallo RV: Pulsatile LH release during the ovulatory LH surge on proestrus in the rat. Biol Reprod 1981, 24:100-104.
  • [30]Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK: The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 2010, 315:63-73.
  • [31]Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ: Critical roles for Dicer in the female germline. Genes Dev 2007, 21:682-693.
  • [32]Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, Han J: Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 2008, 118:1944-1954.
  • [33]Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK: Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 2008, 149:6207-6212.
  • [34]Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM: Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008, 22:2336-2352.
  • [35]Thomson T, Lin H: The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009, 25:355-376.
  • [36]Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008, 453:539-543.
  • [37]Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453:534-538.
  • [38]Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007, 39:380-385.
  • [39]Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R: MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 2010, 20:271-277.
  • [40]Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R: Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008, 22:2773-2785.
  • [41]Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ: Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive biology and endocrinology: RB&E 2011, 9:2. BioMed Central Full Text
  • [42]Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA: Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod 2009, 81:165-176.
  • [43]Bannister SC, Smith CA, Roeszler KN, Doran TJ, Sinclair AH, Tizard ML: Manipulation of Estrogen Synthesis Alters MIR202* Expression in Embryonic Chicken Gonads. Biol Reprod 2011, 85:22-30.
  • [44]Tripurani SK, Lee KB, Wee G, Smith GW, Yao J: MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC developmental biology 2011, 11:25. BioMed Central Full Text
  • [45]Lingenfelter BM, Tripurani SK, Tejomurtula J, Smith GW, Yao J: Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reproductive biology and endocrinology: RB&E 2011, 9:40. BioMed Central Full Text
  • [46]Fiedler SD, Carletti MZ, Hong X, Christenson LK: Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 2008, 79:1030-1037.
  • [47]Yao N, Yang BQ, Liu Y, Tan XY, Lu CL, Yuan XH, Ma X: Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 2010.
  • [48]Sasson R, Dantes A, Tajima K, Amsterdam A: Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2003, 17:1256-1266.
  • [49]Grieshaber NA, Ko C, Grieshaber SS, Ji I, Ji TH: Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I beta-tubulin, tropomyosin-4, and kinesin heavy chain. Endocrinology 2003, 144:29-39.
  • [50]Tanaka M, Hennebold JD, Miyakoshi K, Teranishi T, Ueno K, Adashi EY: The generation and characterization of an ovary-selective cDNA library. Mol Cell Endocrinol 2003, 202:67-69.
  • [51]Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, Sampath K, Chang RJ, Erickson GF: A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA 1999, 96:7282-7287.
  • [52]Sirotkin AV, Ovcharenko D, Grossmann R, Laukova M, Mlyncek M: Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 2009, 219:415-420.
  • [53]Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F: MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 2010, 24:540-551.
  • [54]Xu S, Linher-Melville K, Yang BB, Wu D, Li J: Micro-RNA378 (miR-378) Regulates Ovarian Estradiol Production by Targeting Aromatase. Endocrinology 2011.
  • [55]Carletti MZ, Fiedler SD, Christenson LK: MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 2010, 83:286-295.
  • [56]Ma T, Jiang H, Gao Y, Zhao Y, Dai L, Xiong Q, Xu Y, Zhao Z, Zhang J: Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genet 2011.
  • [57]Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, et al.: MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 2008, 26:462-469.
  • [58]Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM: MicroRNA signatures in human ovarian cancer. Cancer Res 2007, 67:8699-8707.
  • [59]Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008, 110:13-21.
  • [60]Zhou Y, Zhu YZ, Zhang SH, Wang HM, Wang SY, Yang XK: MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chinese journal of birth health and heredity 2011, 19:20-22.
  文献评价指标  
  下载次数:14次 浏览次数:12次