期刊论文详细信息
EvoDevo
Pleiotropic effects of a single gene on skeletal development and sensory system patterning in sticklebacks
Catherine L Peichel2  Anna K Greenwood2  Margaret G Mills1 
[1] Graduate Program in Molecular and Cellular Biology, University of Washington, 1959 NE Pacific Street, Health Sciences Building T-466, Seattle 98195, WA, USA;Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA, 98109, USA
关键词: Dermal skeleton;    Neuromast;    Lateral line;    Genetics of adaptation;    Pleiotropy;   
Others  :  802225
DOI  :  10.1186/2041-9139-5-5
 received in 2013-10-08, accepted in 2013-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

Adaptation to a new environment can be facilitated by co-inheritance of a suite of phenotypes that are all advantageous in the new habitat. Although experimental evidence demonstrates that multiple phenotypes often map to the same genomic regions, it is challenging to determine whether phenotypes are associated due to pleiotropic effects of a single gene or to multiple tightly linked genes. In the threespine stickleback fish (Gasterosteus aculeatus), multiple phenotypes are associated with a genomic region around the gene Ectodysplasin (Eda), but only the presence of bony lateral plates has been conclusively shown to be caused by Eda.

Results

Here, we ask whether pleiotropy or linkage is responsible for the association between lateral plates and the distribution of the neuromasts of the lateral line. We first identify a strong correlation between plate appearance and changes in the spatial distribution of neuromasts through development. We then use an Eda transgene to induce the formation of ectopic plates in low plated fish, which also results in alterations to neuromast distribution. Our results also show that other loci may modify the effects of Eda on plate formation and neuromast distribution.

Conclusions

Together, these results demonstrate that Eda has pleiotropic effects on at least two phenotypes, highlighting the role of pleiotropy in the genetic basis of adaptation.

【 授权许可】

   
2014 Mills et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708020849427.pdf 1289KB PDF download
Figure 3. 129KB Image download
Figure 2. 172KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Fisher RA: The Genetical Theory of Natural Selection. Oxford: Oxford University Press; 1930.
  • [2]Orr HA: Adaptation and the cost of complexity. Evolution 2000, 54:13-20.
  • [3]Schluter D: The Ecology of Adaptive Radiation. Oxford: Oxford University Press; 2000.
  • [4]Lande R: Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 1979, 33:402-416.
  • [5]Kirkpatrick M, Barton N: Chromosome inversions, local adaptation and speciation. Genetics 2006, 173:419-434.
  • [6]Hoffmann AA, Rieseberg LH: Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 2008, 39:21-42.
  • [7]Hawthorne DJ, Via S: Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 2001, 412:904-907.
  • [8]Albertson RC, Streelman JT, Kocher TD: Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proc Natl Acad Sci USA 2003, 100:5252-5257.
  • [9]Bratteler M, Lexer C, Widmer A: Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. J Evol Biol 2006, 19:1149-1156.
  • [10]Hall MC, Basten CJ, Willis JH: Pleiotropic quantitative trait loci contribute to population divergence in traits associated with life-history variation in Mimulus guttatus. Genetics 2006, 172:1829-1844.
  • [11]Protas M, Tabansky I, Conrad M, Gross JB, Vidal O, Tabin CJ, Borowsky R: Multi-trait evolution in a cave fish, Astyanax mexicanus . Evol Dev 2008, 10:196-209.
  • [12]Lowry DB, Willis JH: A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol 2010, 8:e1000500.
  • [13]Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, Wilkinson PA, Salazar C, Davidson C, Clark R, Quail MA, Beasley H, Glithero R, Lloyd C, Sims S, Jones MC, Rogers J, Jiggins CD, ffrench-Constant RH: Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 2011, 477:203-206.
  • [14]Parnell NF, Hulsey CD, Streelman JT: The genetic basis of a complex functional system. Evolution 2012, 66:3352-3366.
  • [15]Yoshizawa M, Yamamoto Y, O’Quin KE, Jeffery WR: Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol 2012, 10:108. BioMed Central Full Text
  • [16]Phillips PC: Testing hypotheses regarding the genetics of adaptation. Genetica 2005, 123:15-24.
  • [17]Carbone MA, Jordan KW, Lyman RF, Harbison ST, Leips J, Morgan TJ, DeLuca M, Awadalla P, Mackay TFC: Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila. Curr Biol 2006, 16:912-919.
  • [18]Flint J, Mackay TFC: Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res 2009, 19:723-733.
  • [19]Wittkopp PJ, Beldade P: Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 2009, 20:65-71.
  • [20]Loehlin DW, Werren JH: Evolution of shape by multiple regulatory changes to a growth gene. Science 2012, 335:943-947.
  • [21]Prasad VSK, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, Windsor AJ, Clauss MJ, Manzaneda AJ, Naqvi I, Reichelt M, Gershenzon J, Rupasinghe SG, Schuler MA, Mitchell-Olds T: A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 2012, 337:1081-1084.
  • [22]Hermann K, Klahre U, Moser M, Sheehan H, Mandel T, Kuhlemeier C: Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia. Curr Biol 2013, 23:873-877.
  • [23]Linnen CR, Poh YP, Peterson BK, Barrett RDH, Larson JG, Jensen JD, Hoekstra HE: Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 2013, 339:1312-1316.
  • [24]Kingsley DM, Peichel CL: The molecular genetics of evolutionary change in sticklebacks. In Biology of the Three-Spined Stickleback. Edited by Östlund-Nilsson S, Mayer I, Huntingford F. Boca Raton: CRC Press; 2007:41-81.
  • [25]Bell MA, Foster SA: The Evolutionary Biology of the Threespine Stickleback. Oxford: Oxford University Press; 1994.
  • [26]Östlund-Nilsson S, Mayer I, Huntingford F: Biology of the Three-Spined Stickleback. Boca Raton: CRC Press; 2007.
  • [27]Albert AYK, Sawaya S, Vines TH, Knecht AK, Miller CT, Summers BR, Balabhadra S, Kingsley DM, Schluter D: The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. Evolution 2008, 62:76-85.
  • [28]Barrett RDH, Rogers SM, Schluter D: Natural selection on a major armor gene in threespine stickleback. Science 2008, 322:255-257.
  • [29]Barrett RDH, Rogers SM, Schluter D: Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 2009, 63:2831-2837.
  • [30]Barrett RDH, Vines TH, Bystriansky JS, Schulte PM: Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback. Biol Lett 2009, 5:788-791.
  • [31]Colosimo PF, Peichel CL, Nereng K, Blackman BK, Shapiro MD, Schluter D, Kingsley DM: The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2004, 2:e109.
  • [32]Cresko WA, Amores A, Wilson C, Murphy J, Currey M, Phillips P, Bell MA, Kimmel CB, Postlethwait JH: Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc Natl Acad Sci USA 2004, 101:6050-6055.
  • [33]Le Rouzic A, Østbye K, Klepaker TO, Hansen TF, Bernatchez L, Schluter D, Vøllestad LA: Strong and consistent natural selection associated with armour reduction in sticklebacks. Mol Ecol 2011, 20:2483-2493.
  • [34]Malek TB, Boughman JW, Dworkin I, Peichel CL: Admixture mapping of male nuptial colour and body shape in a recently formed hybrid population of threespine stickleback. Mol Ecol 2012, 21:5265-5279.
  • [35]Marchinko KB: Predation’s role in repeated phenotypic and genetic divergence of armor in threespine stickleback. Evolution 2009, 63:127-138.
  • [36]Rogers SM, Tamkee P, Summers B, Balabahadra S, Marks M, Kingsley DM, Schluter D: Genetic signature of adaptive peak shift in threespine stickleback. Evolution 2012, 66:2439-2450.
  • [37]Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM: Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 2004, 428:717-723.
  • [38]Wark AR, Mills MG, Dang LH, Chan YF, Jones FC, Brady SD, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL: Genetic architecture of variation in the lateral line sensory system of threespine sticklebacks. G3 (Bethesda) 2012, 2:1047-1056.
  • [39]Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson MC, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 2005, 307:1928-1933.
  • [40]Bleckmann H, Zelick R: Lateral line system of fish. Integr Zool 2009, 4:13-25.
  • [41]Mogdans J, Bleckmann H: Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biol Cybern 2012, 106:627-642.
  • [42]Dijkgraaf S: The functioning and significance of the lateral-line organs. Biol Rev Camb Philos Soc 1963, 38:51-105.
  • [43]Webb JF: Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 1989, 33:34-53.
  • [44]Bleckmann H: Peripheral and central processing of lateral line information. J Comp Physiol A 2008, 194:145-158.
  • [45]Coombs S, Görner P, Münz H: The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag; 1989.
  • [46]Wark AR, Peichel CL: Lateral line diversity among ecologically divergent threespine stickleback populations. J Exp Biol 2010, 213:108-117.
  • [47]Barrett RDH: Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation. J Fish Biol 2010, 77:311-328.
  • [48]Bell MA, Aguirre W: Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback. Evol Ecol Res 2013, 15:377-411.
  • [49]Reimchen TE, Bergstrom C, Nosil P: Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol Ecol Res 2013, 15:241-269.
  • [50]Greenwood AK, Cech JN, Peichel CL: Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 2012, 14:351-362.
  • [51]Kawakami K, Shima A, Kawakami N: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 2000, 97:11403-11408.
  • [52]Yan M, Wang L-C, Hymowitz SG, Schilbach S, Lee J, Goddard A, de Vos AM, Gao W-Q, Dixit VM: Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000, 290:523-527.
  • [53]Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien C-B: The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 2007, 236:3088-3099.
  • [54]Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jonsson B, Schluter D, Bell MA, Kingsley DM: Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 2010, 327:302-305.
  • [55]Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM: The genetic architecture of divergence between threespine stickleback species. Nature 2001, 414:901-905.
  • [56]Bell MA: Lateral plate polymorphism and ontogeny of the complete plate morph of threespine sticklebacks (Gasterosteus aculeatus). Evolution 1981, 35:67-74.
  • [57]Graham-Smith W: On the lateral lines and dermal bones in the parietal region of some crossopterygian and dipnoan fishes. Philos Trans R Soc Lond B Biol Sci 1978, 282:41-105.
  • [58]Wada H, Ghysen A, Satou C, Higashijima S-I, Kawakami K, Hamaguchi S, Sakaizumi M: Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Dev Biol 2010, 340:583-594.
  • [59]Hendry AP, Peichel CL, Matthews B, Boughman JW, Nosil P: Stickleback research: the now and the next. Evol Ecol Res 2013, 15:111-141.
  • [60]Greenwood AK, Wark AR, Yoshida K, Peichel CL: Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks. Curr Biol 2013, 23:1884-1888.
  • [61]Barrett RDH, Hoekstra HE: Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 2011, 12:767-780.
  • [62]Irschick DJ, Albertson RC, Brennan P, Podos J, Johnson NA, Patek S, Dumont E: Evo-devo beyond morphology: from genes to resource use. Trends Ecol Evol 2013, 28:267-273.
  文献评价指标  
  下载次数:13次 浏览次数:28次