期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole- a study of first pass quantitative perfusion cardiovascular magnetic resonance
Andrew E Arai1  Oscar Julian Booker3  Joel Wilson1  Sujata M Shanbhag1  Christine Mancini1  Steve Leung1  Peter Kellman1  Li-Yueh Hsu1  W Patricia Bandettini1  Sujethra Vasu2 
[1] Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, 10 Center Drive, Building 10, Room B1D416, 20892-1061 Bethesda, MD, USA;Section of Cardiology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, USA;Department of Cardiology, University of Alabama, Birmingham, AL, USA
关键词: Magnetic resonance imaging;    Quantitative myocardial perfusion;    Adenosine;    Dipyridamole;    Regadenoson;   
Others  :  804023
DOI  :  10.1186/1532-429X-15-85
 received in 2012-12-05, accepted in 2013-09-19,  发布年份 2013
PDF
【 摘 要 】

Background

Regadenoson, dipyridamole and adenosine are commonly used vasodilators in myocardial perfusion imaging for the detection of obstructive coronary artery disease. There are few comparative studies of the vasodilator properties of regadenoson, adenosine and dipyridamole in humans. The specific aim of this study was to determine the relative potency of these three vasodilators by quantifying stress and rest myocardial perfusion in humans using cardiovascular magnetic resonance (CMR).

Methods

Fifteen healthy normal volunteers, with Framingham score less than 1% underwent vasodilator stress testing with regadenoson (400 μg bolus), dipyridamole (0.56 mg/kg) and adenosine (140 μg /kg/min) on separate days. Rest perfusion imaging was performed initially. Twenty minutes later, stress imaging was performed at peak vasodilation, i.e. 70 seconds after regadenoson, 4 minutes after dipyridamole infusion and between 3–4 minutes of the adenosine infusion. Myocardial blood flow (MBF) in ml/min/g and myocardial perfusion reserve (MPR) were quantified using a fully quantitative model constrained deconvolution.

Results

Regadenoson produced higher stress MBF than dipyridamole and adenosine (3.58 ± 0.58 vs. 2.81 ± 0.67 vs. 2.78 ± 0.61 ml/min/g, p = 0.0009 and p = 0.0008 respectively). Regadenoson had a much higher heart rate response than adenosine and dipyridamole respectively (95 ± 11 vs. 76 ± 13 vs. 86 ± 12 beats/ minute) When stress MBF was adjusted for heart rate, there were no differences between regadenoson and adenosine (37.8 ± 6 vs. 36.6 ± 4 μl/sec/g, p = NS), but differences between regadenoson and dipyridamole persisted (37.8 ± 6 vs. 32.6 ± 5 μl/sec/g, p = 0.03). The unadjusted MPR was higher with regadenoson (3.11 ± 0.63) when compared with adenosine (2.7 ± 0.61, p = 0.02) and when compared with dipyridamole (2.61 ± 0.57, p = 0.04). Similar to stress MBF, these differences in MPR between regadenoson and adenosine were abolished when adjusted for heart rate (2.04 ± 0.34 vs. 2.12 ± 0.27, p = NS), but persisted between regadenoson and dipyridamole (2.04 ± 0.34 vs. 1.77 ± 0.33, p = 0.07) and between adenosine and dipyridamole (2.12 ± 0.27 vs. 1.77 ± 0.33, p = 0.01).

Conclusions

Based on fully quantitative perfusion using CMR, regadenoson and adenosine have similar vasodilator efficacy and are superior to dipyridamole.

【 授权许可】

   
2013 Vasu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708052610946.pdf 1245KB PDF download
Figure 8. 47KB Image download
Figure 7. 153KB Image download
Figure 6. 50KB Image download
Figure 5. 51KB Image download
Figure 4. 64KB Image download
Figure 3. 69KB Image download
Figure 2. 57KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Cerqueira MD. Advances in pharmacologic agents in imaging: new A2A receptor agonists. Curr Cardiol Rep. 2006; 8:119-22.
  • [2]Al Jaroudi W, Iskandrian AE. Regadenoson: a new myocardial stress agent. J Am Coll Cardiol. 2009; 54:1123-30.
  • [3]Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR et al.. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol. 2007; 14:645-58.
  • [4]Johnson SG, Peters S. Advances in pharmacologic stress agents: focus on regadenoson. J Nucl Med Technol. 2010; 38:163-71.
  • [5]Zhao G, Linke A, Xu X, Ochoa M, Belloni F, Belardinelli L, Hintze TH. Comparative profile of vasodilation by CVT-3146, a novel A2A receptor agonist, and adenosine in conscious dogs. J Pharmacol Exp Ther. 2003; 307:182-9.
  • [6]Trochu JN, Zhao G, Post H, Xu X, Belardinelli L, Belloni FL, Hintze TH. Selective A2A adenosine receptor agonist as a coronary vasodilator in conscious dogs: potential for use in myocardial perfusion imaging. J Cardiovasc Pharmacol. 2003; 41:132-9.
  • [7]Mekkaoui C, Jadbabaie F, Dione DP, Meoli DF, Purushothaman K, Belardinelli L, Sinusas AJ. Effects of adenosine and a selective A2A adenosine receptor agonist on hemodynamic and thallium-201 and technetium-99m-sestaMIBI biodistribution and kinetics. JACC Cardiovasc Imaging. 2009; 2:1198-208.
  • [8]Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, Belardinelli L, Kerensky RA. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol. 2007; 14:514-20.
  • [9]Hendel RC, Bateman TM, Cerqueira MD, Iskandrian AE, Leppo JA, Blackburn B, Mahmarian JJ. Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J Am Coll Cardiol. 2005; 46:2069-75.
  • [10]Hamon M, Fau G, Nee G, Ehtisham J, Morello R. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010; 12:29. BioMed Central Full Text
  • [11]Klem I, Heitner JF, Shah DJ, Sketch MH, Behar V, Weinsaft J, Cawley P, Parker M, Elliott M, Judd RM, Kim RJ. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006; 47:1630-8.
  • [12]Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, Martin ET, Lansky AJ, Kashanian F, Foo TK et al.. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation. 2004; 110:732-7.
  • [13]Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, Nagel E. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004; 110:835-42.
  • [14]Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm SD, Marquardt M, Johansson L. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008; 29:480-9.
  • [15]Merkle N, Wohrle J, Grebe O, Nusser T, Kunze M, Kestler HA, Kochs M, Hombach V. Assessment of myocardial perfusion for detection of coronary artery stenoses by steady-state, free-precession magnetic resonance first-pass imaging. Heart. 2007; 93:1381-5.
  • [16]Elkington AG, He T, Gatehouse PD, Prasad SK, Firmin DN, Pennell DJ. Optimization of the arterial input function for myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2005; 21:354-9.
  • [17]Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging. 2006; 23:315-22.
  • [18]Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010; 12:57. BioMed Central Full Text
  • [19]Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998; 25:73-84.
  • [20]Gatehouse PD, Elkington AG, Ablitt NA, Yang GZ, Pennell DJ, Firmin DN. Accurate assessment of the arterial input function during high-dose myocardial perfusion cardiovascular magnetic resonance. J Magn Reson Imaging. 2004; 20:39-45.
  • [21]Dhalla AK, Wong MY, Wang WQ, Biaggioni I, Belardinelli L. Tachycardia caused by A2A adenosine receptor agonists is mediated by direct sympathoexcitation in awake rats. J Pharmacol Exp Ther. 2006; 316:695-702.
  • [22]Radjenovic A, Biglands JD, Larghat A, Ridgway JP, Ball SG, Greenwood JP, Jerosch-Herold M, Plein S. Estimates of systolic and diastolic myocardial blood flow by dynamic contrast-enhanced MRI. Magn Reson Med. 64:1696-703.
  • [23]Feinstein JA, Epstein FH, Arai AE, Foo TK, Hartley MR, Balaban RS, Wolff SD. Using cardiac phase to order reconstruction (CAPTOR): a method to improve diastolic images. J Magn Reson Imaging. 1997; 7:794-8.
  • [24]Levine MG, Ahlberg AW, Mann A, White MP, McGill CC, Mendes De Leon C, Piriz JM, Waters D, Heller GV. Comparison of exercise, dipyridamole, adenosine, and dobutamine stress with the use of Tc-99m tetrofosmin tomographic imaging. J Nucl Cardiol. 1999; 6:389-96.
  • [25]Taillefer R, Amyot R, Turpin S, Lambert R, Pilon C, Jarry M. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Cardiol. 1996; 3:204-11.
  • [26]Santos-Ocampo CD, Herman SD, Travin MI, Garber CE, Ahlberg AW, Messinger DE, Heller GV. Comparison of exercise, dipyridamole, and adenosine by use of technetium 99m sestamibi tomographic imaging. J Nucl Cardiol. 1994; 1:57-64.
  • [27]Mahmarian JJ, Cerqueira MD, Iskandrian AE, Bateman TM, Thomas GS, Hendel RC, Moye LA, Olmsted AW. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging. 2009; 2:959-68.
  • [28]DiBella EV, Fluckiger JU, Chen L, Kim TH, Pack NA, Matthews B, Adluru G, Priester T, Kuppahally S, Jiji R, McGann C, Litwin SE. The effect of obesity on regadenoson-induced myocardial hyperemia: a quantitative magnetic resonance imaging study. Int J Cardiovasc Imaging. 2012; 6:1435-44.
  • [29]Leaker BR, O'Connor B, Hansel TT, Barnes PJ, Meng L, Mathur VS, Lieu HD. Safety of regadenoson, an adenosine A2A receptor agonist for myocardial perfusion imaging, in mild asthma and moderate asthma patients: a randomized, double-blind, placebo-controlled trial. J Nucl Cardiol. 2008; 15:329-36.
  • [30]Thomas GS, Tammelin BR, Schiffman GL, Marquez R, Rice DL, Milikien D, Mathur V. Safety of regadenoson, a selective adenosine A2A agonist, in patients with chronic obstructive pulmonary disease: a randomized, double-blind, placebo-controlled trial (RegCOPD trial). J Nucl Cardiol. 2008; 15:319-28.
  • [31]Wang L, Jerosch-Herold M, Jacobs DR, Shahar E, Folsom AR. Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2006; 47:565-72.
  • [32]Bhave NM, Freed BH, Yodwut C, Kolanczyk D, Dill K, Lang RM, Mor-Avi V, Patel AR. Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. J Cardiovasc Magn Reson. 2012; 14:89. BioMed Central Full Text
  文献评价指标  
  下载次数:88次 浏览次数:24次