期刊论文详细信息
EvoDevo
Evolution of embryonic development in nematodes
Einhard Schierenberg1  Jens Schulze1 
[1] University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
关键词: C. elegans;    Prionchulus;    Tobrilus;    evolution;    cell specification;    symmetry formation;    polarity;    cell lineage;    embryogenesis;    nematode;   
Others  :  810783
DOI  :  10.1186/2041-9139-2-18
 received in 2011-07-22, accepted in 2011-09-20,  发布年份 2011
PDF
【 摘 要 】

Background

Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades.

Methods

The study was conducted using 4-D microscopy and 3-D modeling of developing embryos.

Results

We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos.

Conclusions

The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.

【 授权许可】

   
2011 Schulze and Schierenberg; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709051508237.pdf 6911KB PDF download
Figure 1. 144KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK: A molecular evolutionary framework for the phylum Nematoda. Nature 1998, 392:71-75.
  • [2]De Ley P, Blaxter ML: Systematic Position and Phylogeny. In The Biology of Nematodes. Edited by Lee DL. Taylor and Francis, London; 2002:1-30.
  • [3]Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ: An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 2007, 42:622-636.
  • [4]Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DH, Felix MA: Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol 2007, 17:1925-1937.
  • [5]Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J: Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 2006, 23:1792-1800.
  • [6]Aleshin VV, Kedrova OS, Milyutina IA, Vladychenskaya NS, Petrov NB: Relationships among nematodes based on the analysis of 18S rRNA gene sequences: molecular evidence for monophyly of Chromadorian and Secernentean nematodes. Russ J Nematol 1998, 6:175-184.
  • [7]Boveri T: Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse [in German]. In Festschrift für Carl von Kupffer. Gustav Fischer Verlag, Jena; 1899:383-430.
  • [8]Müller H: Beitrag zur Embryonalentwicklung von Ascaris megalocephala [in German]. Zoologica 1903, 17:1-30.
  • [9]Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64-119.
  • [10]Schnabel R, Hutter H, Moerman D, Schnabel H: Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev Biol 1997, 184:234-265.
  • [11]Houthoofd W, Borgonie G: The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea). Nematology 2007, 9:573-584.
  • [12]Houthoofd W, Jacobsen K, Mertens C, Vangestel S, Coomans A, Borgonie G: Embryonic cell lineage of the marine nematode Pellioditis marina. Dev Biol 2003, 258:57-69.
  • [13]Houthoofd W, Willems M, Jacobsen K, Coomans A, Borgonie G: The embryonic cell lineage of the nematode Rhabditophanes sp. Int J Dev Biol 2008, 52:963-967.
  • [14]Dolinski C, Baldwin JG, Thomas WK: Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications. Can J Zool 2001, 79:82-94.
  • [15]Vangestel S, Houthoofd W, Bert W, Borgonie G: The early embryonic development of the satellite organism Pristionchus pacificus: differences and similarities with Caenorhabditis elegans. Nematology 2008, 10:301-312.
  • [16]Zhao Z, Boyle TJ, Bao Z, Murray JI, Mericle B, Waterston RH: Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 2008, 314:93-99.
  • [17]Sommer RJ: Evolution of development in nematodes related to C. elegans. [http://www.wormbook.org] webciteWormBook 'The C. elegans Resarch Community'; 2005.
  • [18]Brauchle M, Kiontke K, MacMenamin P, Fitch DH, Piano F: Evolution of early embryogenesis in rhabditid nematodes. Dev Biol 2009, 335:253-262.
  • [19]Lin KT, Broitman-Maduro G, Hung WW, Cervantes S, Maduro MF: Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 2009, 325:296-306.
  • [20]Bolker JA: Model systems in developmental biology. Bioessays 1995, 17:451-455.
  • [21]Skiba F, Schierenberg E: Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Dev Biol 1992, 151:597-610.
  • [22]Malakhov VV: Nematodes Structure, Development, Classification and Phylogeny. Washington Smithsonian Institution Press; 1994.
  • [23]Voronov DA: The embryonic development of Pontonema vulgare (Enoplida: Oncholaimidae) with a discussion of nematode phylogeny. Russ J Nematol 1999, 7:105-114.
  • [24]Goldstein B: On the evolution of early development in the Nematoda. Philos Trans R Soc Lond B Biol Sci 2001, 356:1521-1531.
  • [25]Schierenberg E: Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. Bioessays 2001, 23:841-847.
  • [26]Lahl V, Halama C, Schierenberg E: Comparative and experimental embryogenesis of Plectidae (Nematoda). Dev Genes Evol 2003, 213:18-27.
  • [27]Lahl V, Schulze J, Schierenberg E: Differences in embryonic pattern formation between Caenorhabditis elegans and its close parthenogenetic relative Diploscapter coronatus. Int J Dev Biol 2009, 53:507-515.
  • [28]Bento G, Ogawa A, Sommer RJ: Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 2010, 466:494-497.
  • [29]Kiontke K, Fitch DH: Phenotypic plasticity: different teeth for different feasts. Curr Biol 2010, 20:710-712.
  • [30]Wiegner O, Schierenberg E: Regulative development in a nematode embryo: a hierarchy of cell fate transformations. Dev Biol 1999, 215:1-12.
  • [31]Voronov DA, Panchin YV: Cell lineage in marine nematode Enoplus brevis. Development. 1998, 125:143-150.
  • [32]Schierenberg E: Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Dev Genes Evol 2005, 215:103-108.
  • [33]Schulze J, Schierenberg E: Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Dev Biol 2008, 315:426-436.
  • [34]Schulze J, Schierenberg E: Embryogenesis of Romanomermis culicivorax: an alternative way to construct a nematode. Dev Biol 2009, 334:10-21.
  • [35]Voronov DA: Comparative embryology of nematodes and the law of embryo similarity [in Russian]. Zh Obshch Biol 2001, 62:34-48.
  • [36]Aleshin VV: Whether variable cleavage of Enoplida (Nematoda) is primitive? Notes to D.A. Voronov article "Comparative embryology of Nematoda and the law of embryologic similarity" [in Russian]. Zh Obshch Biol 2004, 65:74-80.
  • [37]Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G: Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 1978, 75:376-380.
  • [38]Costello DP: On the orientation of centrioles in dividing cells, and its significance: a new contribution to spindle mechanics. Biol Bull 1961, 120:285-312.
  • [39]Thery M, Bornens M: Cell shape and cell division. Curr Opin Cell Biol 2006, 18:648-657.
  • [40]Voronov DA, Panchin YV, Spiridonov SE: Nematode phylogeny and embryology. Nature 1998, 395:28.
  • [41]Schierenberg E: Reversal of cellular polarity and early cell-cell interaction in the embryos of Caenorhabditis elegans. Dev Biol 1987, 122:452-463.
  • [42]Drozdovskiy EM: Contribution to the Analysis of the Embryogenesis of certain Adenophorea (Nematoda) [in Russian]. Reports of the Academy of Sciences of the USSR. 1969, 186:720-723.
  • [43]Borgonie G, Jacobsen K, Coomans A: Embryonic lineage evolution in nematodes. Nematology 2000, 2:65-69.
  • [44]Wyss U: Longidorus elongatus (Nematoda) Embryonalentwicklung. Institut für den Wissenschaftlichen Film, Göttingen, Germany; 1973. Film E2046
  • [45]Laugsch M, Schierenberg E: Differences in maternal supply and early development of closely related nematode species. Int J Dev Biol 2004, 48:655-662.
  • [46]Hyman AA: Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J Cell Biol 1989, 109:1185-1193.
  • [47]Gönczy P, Rose LS: Asymmetric cell division and axis formation in the embryo. [http://www.wormbook.org] webciteWormBook 'The C. elegans Resarch Community'; 2005.
  • [48]Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B: The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 2007, 312:545-559.
  • [49]Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 1997, 387:489-493.
  • [50]Hejnol A, Schnabel R: The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 2005, 132:1349-1361.
  • [51]Priess JR, Hirsh DI: Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol 1986, 117:156-173.
  • [52]Azevedo RB, Lohaus R, Braun V, Gumbel M, Umamaheshwar M, Agapow PM, Houthoofd W, Platzer U, Borgonie G, Meinzer HP, Leroi AM: The simplicity of metazoan cell lineages. Nature 2005, 433:152-156.
  • [53]True JR, Haag ES: Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 2001, 3:109-119.
  • [54]Wylie C: Germ cells. Cell 1999, 96:165-174.
  • [55]Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DH: Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci USA 2004, 101:9003-9008.
  • [56]Keating HH, White JG: Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 1998, 111(Pt 20):3027-3033.
  • [57]Kemphues K, Strome S: Fertilization and establishment of polarity in the embryo. In C elegans II. Edited by Riddle DL, Blumenthal T, Meyer BJ, Priess J. New York: Cold Spring Harbor Laboratory Press; 1997.
  • [58]Cowan CR, Hyman AA: Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol 2004, 20:427-453.
  • [59]Krueger LE, Wu JC, Tsou MF, Rose LS: LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos. J Cell Biol 2010, 189:481-495.
  • [60]Zonies S, Motegi F, Hao Y, Seydoux G: Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2. Development 2010, 137:1669-1677.
  • [61]Grill SW, Hyman AA: Spindle positioning by cortical pulling forces. Dev Cell 2005, 8:461-465.
  • [62]Nguyen-Ngoc T, Afshar K, Gonczy P: Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 2007, 9:1294-1302.
  • [63]Goldstein B, Frisse LM, Thomas WK: Embryonic axis specification in nematodes: evolution of the first step in development. Curr Biol 1998, 8:157-160.
  • [64]Cheng NN, Kirby CM, Kemphues KJ: Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 1995, 139:549-559.
  • [65]Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S: Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 1998, 125:3607-3614.
  • [66]Hung TJ, Kemphues KJ: PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 1999, 126:127-135.
  • [67]Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J: Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2001, 2:1-10.
  • [68]Hao Y, Boyd L, Seydoux G: Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 2006, 10:199-208.
  • [69]Goldstein B, Macara IG: The PAR proteins: fundamental players in animal cell polarization. Dev Cell 2007, 13:609-622.
  • [70]Arata Y, Lee JY, Goldstein B, Sawa H: Extracellular control of PAR protein localization during asymmetric cell division in the C. elegans embryo. Development 2010, 137:3337-3345.
  • [71]Bei Y, Hogan J, Berkowitz LA, Soto M, Rocheleau CE, Pang KM, Collins J, Mello CC: SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. Dev Cell 2002, 3:113-125.
  • [72]Berkowitz LA, Strome S: MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development 2000, 127:4419-4431.
  • [73]Conklin EG: The organization and cell lineage of the ascidian egg. In J Acad Nat Sci. Volume 13. Philadelphia; 1905::1-119.
  • [74]Hibino T, Nishikata T, Nishida H: Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo. Dev Growth Differ 1998, 40:85-95.
  • [75]Nishikata T, Hibino T, Nishida H: The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev Biol 1999, 209:72-85.
  • [76]Patalano S, Pruliere G, Prodon F, Paix A, Dru P, Sardet C, Chenevert J: The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J Cell Sci 2006, 119:1592-1603.
  • [77]Meinhardt H: Different strategies for midline formation in bilaterians. Nat Rev Neurosci 2004, 5:502-510.
  • [78]Schnabel R, Priess JR: Specification of Cell Fates in the Early Embryo. In C elegans II. Edited by Riddle DL, Blumenthal T, Meyer BJ, Priess J. New York: Cold Spring Harbor Laboratory Press; 1997.
  • [79]Goldstein B: An analysis of the response to gut induction in the C. elegans embryo. Development 1995, 121:1227-1236.
  • [80]Eisenmann DM: Wnt signaling. [http://www.wormbook.org] webciteWormbook 'The C. elegans Resarch Community'; 2005.
  • [81]Priess JR: Notch signaling in the C. elegans embryo. [http://www.wormbook.org] webciteWormBook 'The C. elegans Resarch Community'; 2005.
  • [82]Goldstein B: Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions. Development 1993, 118:1267-1277.
  文献评价指标  
  下载次数:21次 浏览次数:34次