期刊论文详细信息
EPMA Journal
Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon?
Hans H Schild4  Walther Kuhn1  Manuel Debald1  Michael Braun3  Daniela Trog4  Vincenzo Costigliola2  Kristina Yeghiazaryan4  Olga Golubnitschaja4 
[1] Department of Obstetrics and Gynaecology, University of Bonn, Bonn, Germany;European Medical Association, Brussels, Belgium;Department of Gynaecology, Red Cross Clinics Munich, Munich, Germany;Breast Cancer Research Centre, University of Bonn, Bonn, Germany
关键词: Ethics;    Tamoxifen;    Mathematical modelling;    Computer assistance;    Adjuvant therapy;    Metalloproteinase;    Immune system;    Imaging;    Omics;    Assay;    Genetic testing;    Innovative technologies;    Integrative personalised medicine;    Medical record;    Medical services;    Preventive healthcare;    Predictive diagnosis;    Biomarker pattern;    Metastasis;    Cancer;    Inflammation;   
Others  :  801845
DOI  :  10.1186/1878-5085-4-6
 received in 2012-11-15, accepted in 2012-12-29,  发布年份 2013
PDF
【 摘 要 】

Breast cancer is a multifactorial disease. A spectrum of internal and external factors contributes to the disease promotion such as a genetic predisposition, chronic inflammatory processes, exposure to toxic compounds, abundant stress factors, a shift-worker job, etc. The cumulative effects lead to high incidence of breast cancer in populations worldwide. Breast cancer in the USA is currently registered with the highest incidence rates amongst all cancer related patient cohorts. Currently applied diagnostic approaches are frequently unable to recognise early stages in tumour development that impairs individual outcomes. Early diagnosis has been demonstrated to be highly beneficial for significantly enhanced therapy efficacy and possibly full recovery. Actual paper shows that the elaboration of an integrative diagnostic approach combining several levels of examinations creates a robust platform for the reliable risk assessment, targeted preventive measures and more effective treatments tailored to the person in the overall task of breast cancer management. The levels of examinations are proposed, and innovative technological approaches are described in the paper. The absolute necessity to create individual patient profiles and extended medical records is justified for the utilising by routine medical services. Expert recommendations are provided to promote further developments in the field.

【 授权许可】

   
2013 Golubnitschaja et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708013156567.pdf 1456KB PDF download
Figure 5. 120KB Image download
Figure 4. 62KB Image download
Figure 3. 26KB Image download
Figure 2. 31KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]WHO: Cancer. [http://www.who.int/mediacentre/factsheets/fs297/en/ webcite]
  • [2]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer Statistics, 2009. CA Cancer J Clin 2009, 59:225-249.
  • [3]National Cancer Institute at the National Institutes of Health: Breast Cancer. http://www.cancer.gov/cancertopics/types/breast webcite
  • [4]Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, Cristofanilli M, Dontu G, Bidaut L, Valero V, Hortobagyi GN, Yu D: Breast cancer metastasis: challenges and opportunities. Cancer Res 2009, 69:4951-4953.
  • [5]Ross JS, Hortobagyi GN: Molecular Oncology of Breast Cancer. Ma: Jones & Bartlett Pub; 2004.
  • [6]Hayashi N, Yamauchi H: Role of circulating tumor cells and disseminated tumor cells in primary breast cancer. Breast Cancer 2012, 19:110-117.
  • [7]Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ, Uhr JW, Terstappen LWMM: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004, 10:6897-6904.
  • [8]Alix-Panabières C, Riethdorf S, Pantel K: Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 2008, 14:5013-5021.
  • [9]Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, Stathopoulos EN, Stathopoulou A, Lianidou E, Chlouverakis G, Sotiriou C, Georgoulias V, Mavroudis D: Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 2007, 25:5194-5202.
  • [10]Nguyen DX, Massagué J: Genetic determinants of cancer metastasis. Nat Rev Genet 2007, 8:341-352.
  • [11]Braun M, Fountoulakis M, Yeghiazaryan K, Schild HH, Kuhn W, Golubnitschaja O: How realistic are non-invasive approaches in breast cancer prediction? In Predictive Diagnostics and Personalized Treatment: Dream or Reality. Edited by Golubnitschaja O. New York: Nova Science Publishers Inc; 2009:433-446.
  • [12]Vorbach C, Capecchi MR, Penninger JM: Evolution of the mammary gland from the innate immune system? Bioessays 2006, 28:606-616.
  • [13]Howard BA, Gusterson BA: Human breast development. J Mammary Gland Biol Neoplasia 2000, 5:119-137.
  • [14]DeNardo DG, Coussens LM: Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007, 9:212. BioMed Central Full Text
  • [15]Dunn GP, Old LJ, Schreiber RD: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004, 21:137-148.
  • [16]Coronella-Wood JA, Hersh EM: Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother 2003, 52:715-738.
  • [17]Wong PY, Staren ED, Tereshkova N, Braun DP: Functional analysis of tumor-infiltrating leukocytes in breast cancer patients. J Surg Res 1998, 76:95-103.
  • [18]Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420:860-867.
  • [19]Balkwill F, Charles KA, Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7:211-217.
  • [20]Wiseman BS, Werb Z: Stromal effects on mammary gland development and breast cancer. Science 2002, 296:1046-1049.
  • [21]Hojilla CV, Wood GA, Khokha R: Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res 2008, 10:205. BioMed Central Full Text
  • [22]Golubnitschaja O, Costigliola V: Common origin but individual outcomes: time for new guidelines in personalized healthcare. Personalized Med 2010, 7:561-568.
  • [23]Ross JS: Integrated diagnostics and personalized therapeutics in oncology. In Predictive Diagnostics and Personalized Treatment: Dream or Reality. Edited by Golubnitschaja O. New York: Nova Science Publishers Inc; 2009:399-431.
  • [24]Yeghiazaryan K, Braun M, Mamlouk S, Schild HH, Golubnitschaja O: Are side-effects of irradiation predictable for treatment of breast cancer patients? In Predictive Diagnostics and Personalized Treatment: Dream or Reality. New York: Nova Science Publishers Inc; 2009:447-456.
  • [25]Gahan P: Circulating nucleic acids in plasma and serum: diagnosis and prognosis in cancer. EPMA J 2010, 1:503-512.
  • [26]Mallmann M, Staratschek-Jox A, Rudlowski C, Braun M, Gaarz A, Wolfgarten M, Kuhn W, Schultze J: Prediction and prognosis: impact of gene expression profiling in personalized treatment of breast cancer patients. EPMA J 2010, 1:421-437.
  • [27]Debald M, Wolfgarten M, Walgenbach-Brünagel G, Kuhn W, Braun M: Non-invasive proteomics—thinking about personalized breast cancer screening and treatment. EPMA J 2010, 1:413-420.
  • [28]Yeghiazaryan K, Mamlouk S, Trog D, Moenkemann H, Braun M, Kuhn W, Schild H, Golubnitschaja O: Irradiated breast cancer patients demonstrate subgroup-specific regularities in protein expression patterns of circulating leukocytes. Cancer Genomics Proteomics 2007, 4:411-418.
  • [29]Golubnitschaja O: Cell cycle checkpoints: the role and evaluation for early diagnosis of senescence, cardiovascular, cancer, and neurodegenerative diseases. Amino Acids 2007, 32:359-371.
  • [30]NIH / NCI: The Breast Cancer Risk Assessment Tool. [http://www.cancer.gov/bcrisktool/ webcite]
  • [31]Cebioglu M, Schild HH, Golubnitschaja O: Diabetes mellitus as a risk factor for cancer: stress or viral etiology? Infect Disord Drug Targets 2008, 8:76-87.
  • [32]Golubnitschaja O: Changing long-held beliefs is never easy: A Proposal for multimodal approaches in female healthcare - An Integrative view. In Healthcare Overview: New Perspectives. Edited by Costigliola V. Dordrecht Heidelberg New York London: Springer; 2012:251-268.
  • [33]NIH / NCI: Sleep Disorders. [http://www.cancer.gov/cancertopics/pdq/supportivecare/sleepdisorders/HealthProfessional/page1/AllPages webcite]
  • [34]Richter K, Acker J, Kamcev N, Bajraktarov S, Piehl A, Niklewski G: Recommendations for the prevention of breast cancer in shift workers. EPMA J 2011, 2:351-356.
  • [35]Golubnitschaja O, Moenkemann H, Kim K, Mozaffari MS: DNA damage and expression of checkpoint genes p21(WAF1/CIP1) and 14-3-3 sigma in taurine-deficient cardiomyocytes. Biochem Pharmacol 2003, 66:511-517.
  • [36]Yeghiazaryan K, Cebioglu M, Braun M, Kuhn W, Schild HH, Golubnitschaja O: Noninvasive subcellular imaging in breast cancer risk assessment: construction of diagnostic windows. Personalized Med 2011, 8:321-330.
  • [37]Bechtel W, Bauer G: Catalase Protects Tumor Cells from Apoptosis Induction by Intercellular ROS Signaling. Anticancer Res 2009, 29:4541-4557.
  • [38]Bai J, Cederbaum AI: Catalase Protects HepG2 Cells from Apoptosis Induced by DNA-damaging Agents by Accelerating the Degradation of p53. J Biol Chem 2003, 278:4660-4667.
  • [39]Nishikawa M, Tamada A, Hyoudou K, Umeyama Y, Takahashi Y, Kobayashi Y, Kumai H, Ishida E, Staud F, Yabe Y, Takakura Y, Yamashita F, Hashida M: Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis 2004, 21:213-221.
  • [40]Jang B-C, Paik J-H, Kim S-P, Shin D-H, Song D-K, Park J-G, Suh M-H, Park J-W, Suh S-I: Catalase induced expression of inflammatory mediators via activation of NF-kappaB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell Signal 2005, 17:625-633.
  • [41]Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Nowell S, Davis W, Garza C, Neugut AI, Ambrosone CB: Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 2005, 162:943-952.
  • [42]Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W: Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 2011, 11:191. BioMed Central Full Text
  • [43]Zou L, Jaramillo M, Whaley D, Wells A, Panchapakesa V, Das T, Roy P: Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. Br J Cancer 2007, 97:1361-1371.
  • [44]Masui O, White NM, Desouza LV, Krakovska O, Matta A, Metias S, Khalil B, Romaschin AD, Honey RJ, Stewart R, Pace K, Bjarnason GA, Siu KW, Yousef GM: Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol Cell Proteomics 2013, 12:132-144.
  • [45]Roy P, Jacobson K: Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 2004, 57:84-95.
  • [46]Wittenmayer N, Jandrig B, Rothkegel M, Schlüter K, Arnold W, Haensch W, Scherneck S, Jockusch BM: Tumor suppressor activity of profilin requires a functional actin binding site. Mol Biol Cell 2004, 15:1600-1608.
  • [47]Cao Y, Motomura K, Ohtsuru A, Matsumoto T, Yamashita S, Kosaka M: Profilin gene expression and regulation in a temperature-sensitive breast cancer cell line: tsFT101. Pflugers Arch 1997, 434:341-345.
  • [48]Janke J, Schlüter K, Jandrig B, Theile M, Kölble K, Arnold W, Grinstein E, Schwartz A, Estevéz-Schwarz L, Schlag PM, Jockusch BM, Scherneck S: Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med 2000, 191:1675-1686.
  • [49]Rabinovitz I, Simpson K: The actin cytoskeleton and metastasis. In Cell Adhesion and Cytoskeletal Molecules in Metastasis. Edited by Cress AE, Nagle RB. Dordrecht: Springer; 2006:69-90.
  • [50]Renz M, Betz B, Niederacher D, Bender HG, Langowski J: Invasive breast cancer cells exhibit increased mobility of the actin-binding protein CapG. Int J Cancer 2008, 122:1476-1482.
  • [51]Kim JY, Lee YG, Kim M-Y, Byeon SE, Rhee MH, Park J, Katz DR, Chain BM, Cho JY: Src-mediated regulation of inflammatory responses by actin polymerization. Biochem Pharmacol 2010, 79:431-443.
  • [52]Pellegrin S, Mellor H: Actin stress fibres. J Cell Sci 2007, 120:3491-3499.
  • [53]Sotiriou C, Pusztai L: Gene-expression signatures in breast cancer. N Engl J Med 2009, 360:790-800.
  • [54]Dai E, Stewart M, Ritchie B, Mesaeli N, Raha S, Kolodziejczyk D, Hobman ML, Liu LY, Etches W, Nation N, Michalak M, Lucas A: Calreticulin, a Potential Vascular Regulatory Protein, Reduces Intimal Hyperplasia After Arterial Injury. Arterioscler Thromb Vasc Biol 1997, 17:2359-2368.
  • [55]Watanabe K, Ohira H, Orikasa H, Saito K, Kanno K, Shioya Y, Obara K, Sato Y: Anti-calreticulin antibodies in patients with inflammatory bowel disease. Fukushima J Med Sci 2006, 52:1-11.
  • [56]Alur M, Nguyen MM, Eggener SE, Jiang F, Dadras SS, Stern J, Kimm S, Roehl K, Kozlowski J, Pins M, Michalak M, Dhir R, Wang Z: Suppressive roles of calreticulin in prostate cancer growth and metastasis. Am J Pathol 2009, 175:882-890.
  • [57]Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Terai A, Arai Y, Yoshiki T: Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 2004, 50:857-866.
  • [58]Lwin Z-M, Guo C, Salim A, Yip GW-C, Chew F-T, Nan J, Thike AA, Tan P-H, Bay B-H: Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod Pathol 2010, 23:1559-1566.
  • [59]Liu H, Bowes RC, van de Water B, Sillence C, Nagelkerke JF, Stevens JL: Endoplasmic Reticulum Chaperones GRP78 and Calreticulin Prevent Oxidative Stress, Ca2+ Disturbances, and Cell Death in Renal Epithelial Cells. J Biol Chem 1997, 272:21751-21759.
  • [60]Chahed K, Kabbage M, Ehret-Sabatier L, Lemaitre-Guillier C, Remadi S, Hoebeke J, Chouchane L: Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: the two-dimensional electrophoresis and MALDI-TOF-mass spectrometry analyses. Int J Oncol 2005, 27:1425-1431.
  • [61]Quandt KS, Hultquist DE: Flavin reductase: sequence of cDNA from bovine liver and tissue distribution. Proc Natl Acad Sci U S A 1994, 91:9322-9326.
  • [62]Lu H, Chen J, Planko L, Zigrino P, Klein-Hitpass L, Magin TM: Induction of inflammatory cytokines by a keratin mutation and their repression by a small molecule in a mouse model for EBS. J Invest Dermatol 2007, 127:2781-2789.
  • [63]Lyda MH, Tetef M, Carter NH, Ikle D, Weiss LM, Arber DA: Keratin immunohistochemistry detects clinically significant metastases in bone marrow biopsy specimens in women with lobular breast carcinoma. Am J Surg Pathol 2000, 24:1593-1599.
  • [64]Hendrix MJC, Seftor EA, Chu Y-W, Trevor KT, Seftor REB: Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1996, 15:507-525.
  • [65]Paccione RJ, Miyazaki H, Patel V, Waseem A, Gutkind JS, Zehner ZE, Yeudall WA: Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol Cancer Ther 2008, 7:2894-2903.
  • [66]Russell D, Andrews PD, James J, Lane EB: Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci 2004, 117:5233-5243.
  • [67]Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM: Shear Stress Induced Reorganization of the Keratin Intermediate Filament Network Requires Phosphorylation by Protein Kinase C ζ. Mol Biol Cell 2009, 20:2755-2765.
  • [68]Tung JJ, Kitajewski J: Chloride intracellular channel 1 functions in endothelial cell growth and migration. J Angiogenes Res 2010, 2:23. BioMed Central Full Text
  • [69]Wang J-W, Peng S-Y, Li J-T, Wang Y, Zhang Z-P, Cheng Y, Cheng D-Q, Weng W-H, Wu X-S, Fei X-Z, Quan Z-W, Li J-Y, Li S-G, Liu Y-B: Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Lett 2009, 281:71-81.
  • [70]Suginta W, Karoulias N, Aitken A, Ashley RH: Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 2001, 359:55-64.
  • [71]Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM, Cheng C, Garfield S, Yuspa SH: The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 2004, 279:4632-4641.
  • [72]Beliakoff J, Whitesell L: Hsp90: an emerging target for breast cancer therapy. Anticancer Drugs 2004, 15:651-662.
  • [73]Yaobin , Tong W, Zhu Y: Study on HSP70, 90 mRNA gene expression in peripheral blood mononuclear cells with steroid-resistant asthmatics. Zhonghua Jie He He Hu Xi Za Zhi 1998, 21:289-292.
  • [74]Njemini R, Bautmans I, Onyema O, Puyvelde KV, Demanet C, Mets T: Circulating Heat Shock Protein 70 in Health, Aging and Disease. BMC Immunol 2011, 12:24. BioMed Central Full Text
  • [75]Ciocca DR, Calderwood SK: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005, 10:86-103.
  • [76]Zhang M-H, Lee J-S, Kim H-J, Jin D-I, Kim J-I, Lee K-J, Seo J-S: HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 2006, 281:111-121.
  • [77]Liu J, Chen J, Yu L, Tian Y, Cui X, Yan Q, Fu L: Inhibitory effect of ginsenoside-Rg3 on lung metastasis of mouse melanoma transfected with ribonuclease inhibitor. Zhonghua Zhong Liu Za Zhi 2004, 26:722-725.
  • [78]Chen J, Ou-Yang X, Gao J, Zhu J, He X, Rong J: Knockdown of ribonuclease inhibitor expression with siRNA in non-invasive bladder cancer cell line BIU-87 promotes growth and metastasis potentials. Mol Cell Biochem 2010, 349:83-95.
  • [79]Dickson KA: Effect of the Ribonuclease Inhibitor on the Biological Activity of Pancreatic-Type Ribonucleases. PhD thesis. Madison: University of Wisconsin; 2006.
  • [80]Moenner M, Vosoghi M, Ryazantsev S, Glitz DG: Ribonuclease inhibitor protein of human erythrocytes: characterization, loss of activity in response to oxidative stress, and association with Heinz bodies. Blood Cells Mol Dis 1998, 24:149-164.
  • [81]Fominaya JM, Hofsteenge J: Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. J Biol Chem 1992, 267:24655-24660.
  • [82]Chen J-X, Gao Y, Liu J-W, Tian Y-X, Zhao J, Cui X-Y: Antitumor effects of human ribonuclease inhibitor gene transfected on B16 melanoma cells. Int J Biochem Cell Biol 2005, 37:1219-1231.
  • [83]Tumor Research Center: The Influences of Human Placental Ribonuclease Inhibitor Mutants on Their Biological Activities. [http://www.tumorres.com/brain-tumor/10397.htm webcite]
  • [84]Wulf G, Garg P, Liou Y-C, Iglehart D, Lu KP: Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 2004, 23:3397-3407.
  • [85]Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang D-G: Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 2004, 164:1727-1737.
  • [86]Song F, Zhang X, Ren X-B, Zhu P, Xu J, Wang L, Li Y-F, Zhong N, Ru Q, Zhang D-W, Jiang J-L, Xia B, Chen Z-N: Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity: direct binding between CyPA and the ectodomain of CD147. J Biol Chem 2011, 286:8197-8203.
  • [87]Dourlen P, Ando K, Hamdane M, Begard S, Buée L, Galas MC: The peptidyl prolyl cis/trans isomerase Pin1 downregulates the Inhibitor of Apoptosis Protein Survivin. Biochim Biophys Acta 2007, 1773:1428-1437.
  • [88]Yue F, Wang L-S, Xia L, Wang X-L, Feng B, Lu A-G, Chen G-Q, Zheng M-H: Modulated T-complex protein 1 ζ and peptidyl-prolyl cis-trans isomerase B are two novel indicators for evaluating lymph node metastasis in colorectal cancer: Evidence from proteomics and bioinformatics. Proteomics Clin Appl 2009, 3:1225-1235.
  • [89]Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP: Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001, 20:3459-3472.
  • [90]Thaiparambil J, Bender L, Kline E, Ganesh T, Snyder J, Liotta D, Marcus A: Vimentin: A Novel Chemopreventive Target for Breast Cancer Metastasis. Cancer Res 2010, 69:5063-5063.
  • [91]Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M: Vimentin and epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues Organs (Print) 2007, 185:191-203.
  • [92]Kusinska RU, Kordek R, Pluciennik E, Bednarek AK, Piekarski JH, Potemski P: Does vimentin help to delineate the so-called “basal type breast cancer”? J Exp Clin Cancer Res 2009, 28:118. BioMed Central Full Text
  • [93]Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi J-P, Nevo J, Gjerdrum C, Tiron C, Lorens JB, Ivaska J: Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011, 30:1436-1448.
  • [94]Korsching E, Packeisen J, Liedtke C, Hungermann D, Wülfing P, van Diest PJ, Brandt B, Boecker W, Buerger H: The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 2005, 206:451-457.
  • [95]Moisan E, Chiasson S, Girard D: The intriguing normal acute inflammatory response in mice lacking vimentin. Clin Exp Immunol 2007, 150:158-168.
  • [96]Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM: Vimentin is secreted by activated macrophages. Nat Cell Biol 2002, 5:59-63.
  • [97]Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P, Zhu T, Song A, Zhao L, Han Z, Chen G, Wang S, Meng L, Zhou J, Lu Y, Wang S, Ma D: Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 2008, 28:327-334.
  • [98]Tafreshi NK, Bui MM, Bishop K, Lloyd MC, Enkemann SA, Lopez AS, Abrahams D, Carter BW, Vagner J, Grobmyer SR, Gobmyer SR, Gillies RJ, Morse DL: Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clin Cancer Res 2012, 18:207-219.
  • [99]Pastorekova S, Zatovicova M, Pastorek J: Cancer-associated carbonic anhydrases and their inhibition. Curr Pharm Des 2008, 14:685-698.
  • [100]Bekku S, Mochizuki H, Yamamoto T, Ueno H, Takayama E, Tadakuma T: Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepatogastroenterology 2000, 47:998-1001.
  • [101]Knudsen JF, Carlsson U, Hammarström P, Sokol GH, Cantilena LR: The Cyclooxygenase-2 Inhibitor Celecoxib Is a Potent Inhibitor of Human Carbonic Anhydrase II. Inflammation 2004, 28:285-290.
  • [102]Radhakrishnan R, Sluka KA: Acetazolamide, a carbonic anhydrase inhibitor, reverses inflammation-induced thermal hyperalgesia in rats. J Pharmacol Exp Ther 2005, 313:921-927.
  • [103]Yasukawa Z, Sato C, Kitajima K: Identification of an inflammation-inducible serum protein recognized by anti-disialic acid antibodies as carbonic anhydrase II. J Biochem 2007, 141:429-441.
  • [104]Bodh S, Kumar V, Raina U, Ghosh B, Thakar M: Inflammatory glaucoma. Oman J Ophthalmol 2011, 4:3.
  • [105]Martínez JM, Prieto I, Ramírez MJ, Cueva C, Alba F, Ramírez M: Aminopeptidase Activities in Breast Cancer Tissue. Clin Chem 1999, 45:1797-1802.
  • [106]Sekine K, Fujii H, Abe F, Nishikawa K: Augmentation of death ligand-induced apoptosis by aminopeptidase inhibitors in human solid tumor cell lines. Int J Cancer 2001, 94:485-491.
  • [107]Varona A, Blanco L, López JI, Gil J, Agirregoitia E, Irazusta J, Larrinaga G: Altered levels of acid, basic, and neutral peptidase activity and expression in human clear cell renal cell carcinoma. Am J Physiol Renal Physiol 2007, 292:F780-F788.
  • [108]Bukowska A, Tadje J, Arndt M, Wolke C, Kähne T, Bartsch J, Faust J, Neubert K, Hashimoto Y, Lendeckel U: Transcriptional regulation of cytosol and membrane alanyl-aminopeptidase in human T cell subsets. Biol Chem 2003, 384:657-665.
  • [109]Röhnert P, Schmidt W, Emmerlich P, Goihl A, Wrenger S, Bank U, Nordhoff K, Täger M, Ansorge S, Reinhold D, Striggow F: Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. J Neuroinflammation 2012, 9:44. BioMed Central Full Text
  • [110]Xu C, Wang J, Li J, Fang R: Expression of Elongation Factor (EF)-Tu Is Correlated with Prognosis of Gastric Adenocarcinomas. Int J Mol Sci 2011, 12:6645-6655.
  • [111]Zheng G, Peng F, Ding R, Yu Y, Ouyang Y, Chen Z, Xiao Z, He Z: Identification of proteins responsible for the multiple drug resistance in 5-fluorouracil-induced breast cancer cell using proteomics analysis. J Cancer Res Clin Oncol 2010, 136:1477-1488.
  • [112]Fritz G, Just I, Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer 1999, 81:682-687.
  • [113]Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D: The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis 2000, 18:519-525.
  • [114]Fujita A, Shida A, Fujioka S, Kurihara H, Okamoto T, Yanaga K: Clinical significance of Rho GDP dissociation inhibitor 2 in colorectal carcinoma. Int J Clin Oncol 2012, 17:137-142.
  • [115]Moissoglu K, McRoberts KS, Meier JA, Theodorescu D, Schwartz MA: Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res 2009, 69:2838-2844.
  • [116]Zhang B, Zhang Y, Dagher M-C, Shacter E: Rho GDP Dissociation Inhibitor Protects Cancer Cells against Drug-Induced Apoptosis. Cancer Res 2005, 65:6054-6062.
  • [117]Vercoutter-Edouart AS, Lemoine J, Le Bourhis X, Louis H, Boilly B, Nurcombe V, Révillion F, Peyrat JP, Hondermarck H: Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells. Cancer Res 2001, 61:76-80.
  • [118]Pan Y, Zhong L, Zhou H, Wang X, Chen K, Yang H, Xiaokaiti Y, Maimaiti A, Jiang L, Li X: Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis. Acta Pharmacol Sin 2012, 33:798-808.
  • [119]Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, Yu SJ, Koh SK, Beuerman RW: Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophthalmol Vis Sci 2011, 52:7385-7391.
  • [120]Croce K, Gao H, Wang Y, Mooroka T, Sakuma M, Shi C, Sukhova GK, Packard RRS, Hogg N, Libby P, Simon DI: Myeloid-related protein-8/14 is critical for the biological response to vascular injury. Circulation 2009, 120:427-436.
  • [121]Leach ST, Mitchell HM, Geczy CL, Sherman PM, Day AS: S100 calgranulin proteins S100A8, S100A9 and S100A12 are expressed in the inflamed gastric mucosa of Helicobacter pylori-infected children. Can J Gastroenterol 2008, 22:461-464.
  • [122]Carlsson H, Petersson S, Enerbäck C: Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int J Oncol 2005, 27:1473-1481.
  • [123]Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S, Mulligan K, Emberley ED, Lioe TF, Morrison PJ, Mullan PB, Reid G, Johnston PG, Watson PH, Harkin DP: BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Res 2005, 65:10265-10272.
  • [124]Rust R, Visser L, van der Leij J, Harms G, Blokzijl T, Deloulme JC, van der Vlies P, Kamps W, Kok K, Lim M, Poppema S, van den Berg A: High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma. Br J Haematol 2005, 131:596-608.
  • [125]Cross SS, Hamdy FC, Deloulme JC, Rehman I: Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 2005, 46:256-269.
  • [126]Hermani A, Hess J, Servi BD, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D: Calcium-Binding Proteins S100A8 and S100A9 as Novel Diagnostic Markers in Human Prostate Cancer. Clin Cancer Res 2005, 11:5146-5152.
  • [127]Bode G, Lüken A, Kerkhoff C, Roth J, Ludwig S, Nacken W: Interaction between S100A8/A9 and annexin A6 is involved in the calcium-induced cell surface exposition of S100A8/A9. J Biol Chem 2008, 283:31776-31784.
  • [128]Lee H-H, Lim C-A, Cheong Y-T, Singh M, Gam L-H: Comparison of protein expression profiles of different stages of lymph nodes metastasis in breast cancer. Int J Biol Sci 2012, 8:353-362.
  • [129]Rao KVK, Boukli NM, Samikkannu T, Cubano LA, Dakshayani BK, Nair MP: Proteomics Profiling and Cytotoxic Effect of Curcuma longa on Prostate Cancer. Open Proteomics J 2011, 4:1-11.
  • [130]Goplen D, Wang J, Enger PØ, Tysnes BB, Terzis AJA, Laerum OD, Bjerkvig R: Protein Disulfide Isomerase Expression Is Related to the Invasive Properties of Malignant Glioma. Cancer Res 2006, 66:9895-9902.
  • [131]Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR: Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 2010, 6:900-906.
  • [132]Satish L, Johnson S, Wang JH-C, Post JC, Ehrlich GD, Kathju S: Chaperonin Containing T-Complex Polypeptide Subunit Eta (CCT-eta) Is a Specific Regulator of Fibroblast Motility and Contractility. PLoS One 2010, 5:e10063.
  • [133]Wong STC, Zhao H: Molecular Diagnostic Methods for Predicting Brain Metastasis of Breast Cancer. International Patent US 2012/0184560 A1
  • [134]Poulsen N, Andersen V, Møller J, Møller H, Jessen F, Purup S, Larsen L: Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol 2012, 12:76. BioMed Central Full Text
  • [135]Tamesa MS, Kuramitsu Y, Fujimoto M, Maeda N, Nagashima Y, Tanaka T, Yamamoto S, Oka M, Nakamura K: Detection of autoantibodies against cyclophilin A and triosephosphate isomerase in sera from breast cancer patients by proteomic analysis. Electrophoresis 2009, 30:2168-2181.
  • [136]Dang Y, Wang Z, Guo Y, Yang J, Xing Z, Mu L, Zhang X, Ding Z: Overexpression of triosephosphate isomerase inhibits proliferation of chicken embryonal fibroblast cells. Asian Pac J Cancer Prev 2011, 12:3479-3482.
  • [137]Zhang X, Xiao Z, Li C, Xiao Z, Yang F, Li D, Li M, Li F, Chen Z: Triosephosphate isomerase and peroxiredoxin 6, two novel serum markers for human lung squamous cell carcinoma. Cancer Sci 2009, 100:2396-2401.
  • [138]Ang EZ-F, Nguyen HT, Sim H-L, Putti TC, Lim LHK: Annexin-1 Regulates Growth Arrest Induced by High Levels of Estrogen in MCF-7 Breast Cancer Cells. Mol Cancer Res 2009, 7:266-274.
  • [139]Nair S, Hande MP, Lim LHK: Annexin-1 protects MCF7 breast cancer cells against heat-induced growth arrest and DNA damage. Cancer Lett 2010, 294:111-117.
  • [140]Zhang Z, Huang L, Zhao W, Rigas B: Annexin 1 induced by anti-inflammatory drugs binds to NF-κB inhibiting its activation: Anticancer effects in vitro and in vivo. Cancer Res 2010, 70:2379-2388.
  • [141]Peers SH, Smillie F, Elderfield AJ, Flower RJ: Glucocorticoid-and non-glucocorticoid induction of lipocortins (annexins) 1 and 2 in rat peritoneal leucocytes in vivo. Br J Pharmacol 1993, 108:66-72.
  • [142]Mojtahedi Z, Erfani N, Ghaderi A: Comparative Proteomics Analysis of SKBR3 and MCF7 Breast Cancer Cell Lines Using Two Dimensional Electrophoresis: Ready to Build Postgenomics Capacity for OMICS R&D in Developing Countries? Curr Pharmacogenomics Personalized Med 2012, 10:132-137.
  • [143]Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE: Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010, 8:56.
  • [144]España L, Martín B, Aragüés R, Chiva C, Oliva B, Andreu D, Sierra A: Bcl-x(L)-mediated changes in metabolic pathways of breast cancer cells: from survival in the blood stream to organ-specific metastasis. Am J Pathol 2005, 167:1125-1137.
  • [145]Wang C-Y, Chen J-K, Wu Y-T, Tsai M-J, Shyue S-K, Yang C-S, Tzeng S-F: Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury. J Biomed Sci 2011, 18:13. BioMed Central Full Text
  • [146]Karihtala P, Mäntyniemi A, Kang SW, Kinnula VL, Soini Y: Peroxiredoxins in Breast Carcinoma. Clin Cancer Res 2003, 9:3418-3424.
  • [147]Chang X-Z, Li D-Q, Hou Y-F, Wu J, Lu J-S, Di G-H, Jin W, Ou Z-L, Shen Z-Z, Shao Z-M: Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res 2007, 9:R76. BioMed Central Full Text
  • [148]Ho J-N, Lee SB, Lee S-S, Yoon SH, Kang GY, Hwang S-G, Um H-D: Phospholipase A2 Activity of Peroxiredoxin 6 Promotes Invasion and Metastasis of Lung Cancer Cells. Mol Cancer Ther 2010, 9:825-832.
  • [149]Wang Y, Phelan SA, Manevich Y, Feinstein SI, Fisher AB: Transgenic Mice Overexpressing Peroxiredoxin 6 Show Increased Resistance to Lung Injury in Hyperoxia. Am J Respir Cell Mol Biol 2006, 34:481-486.
  • [150]Sundar IK, Chung S, Hwang J-W, Arunachalam G, Cook S, Yao H, Mazur W, Kinnula VL, Fisher AB, Rahman I: Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke–mediated lung inflammatory response and injury. Exp Lung Res 2010, 36:451-462.
  • [151]Somiari RI, Somiari S, Russell S, Shriver CD: Proteomics of breast carcinoma. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 815:215-225.
  • [152]Lee J, Namkoong H, Kim H, Kim S, Hwang D, Na H, Ha S-A, Kim J-R, Kim J: Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer’s disease. BMC Neurol 2007, 7:14. BioMed Central Full Text
  • [153]Akakura N, Hoogland C, Takada YK, Saegusa J, Ye X, Liu F-T, Cheung AT-W, Takada Y: The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res 2006, 66:9691-9697.
  • [154]Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, Bugge TH: Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000, 96:3302-3309.
  • [155]Lu C, Mishra A, Zhu YJ, Meltzer P, Cheng S-Y: Genomic profiling of genes contributing to metastasis in a mouse model of thyroid follicular carcinoma. Am J Cancer Res 2011, 1:1-13.
  • [156]Zhu W-L, Fan B-L, Liu D-L, Zhu W-X: Abnormal Expression of Fibrinogen Gamma (FGG) and Plasma Level of Fibrinogen in Patients with Hepatocellular Carcinoma. Anticancer Res 2009, 29:2531-2534.
  • [157]Du J, Zheng J-H, Chen X-S, Yang Q, Zhang Y-H, Zhou L, Yao X: High preoperative plasma fibrinogen is an independent predictor of distant metastasis and poor prognosis in renal cell carcinoma. Int J Clin Oncol 2012.
  • [158]Domeika M, Domeika K, Paavonen J, Mårdh PA, Witkin SS: Humoral immune response to conserved epitopes of Chlamydia trachomatis and human 60-kDa heat-shock protein in women with pelvic inflammatory disease. J Infect Dis 1998, 177:714-719.
  • [159]Lohse AW, Dienes HP, Herkel J, Hermann E, van Eden W, Büschenfelde KHM: Expression of the 60 kDa heat shock protein in normal and inflamed liver. J Hepatol 1993, 19:159-166.
  • [160]Chen W, Syldath U, Bellmann K, Burkart V, Kolb H: Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 1999, 162:3212-3219.
  • [161]Pockley AG: Heat Shock Proteins, Inflammation, and Cardiovascular Disease. Circulation 2002, 105:1012-1017.
  • [162]Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G: Heat Shock Protein 60 and Immune Inflammatory Responses in Atherosclerosis. Arterioscler Thromb Vasc Biol 2011, 31:960-968.
  • [163]Kligman I, Grifo JA, Witkin SS: Expression of the 60 kDa heat shock protein in peritoneal fluids from women with endometriosis: implications for endometriosis-associated infertility. Hum Reprod 1996, 11:2736-2738.
  • [164]Hwang YJ, Lee SP, Kim SY, Choi YH, Kim MJ, Lee CH, Lee JY, Kim DY: Expression of Heat Shock Protein 60 kDa Is Upregulated in Cervical Cancer. Yonsei Med J 2009, 50:399-406.
  • [165]Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD: Identification of Heat Shock Protein 60 as a Molecular Mediator of α3β1 Integrin Activation. Cancer Res 2002, 62:1541-1548.
  • [166]Cappello F, Bellafiore M, Palma A, David S, Marcianò V, Bartolotta T, Sciumè C, Modica G, Farina F, Zummo G, Bucchieri F: 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 2003, 47:105-110.
  • [167]Shrinivasan A, Poongothai A, Rao C, Srinivasulu M, Vishnupriya S: Serum Lactate Dehydrogenase (LDH) Levels In Breast Cancer. Indian J Hum Genet 1999, 5:21.
  • [168]Olinga P, Merema MT, de Jager MH, Derks F, Melgert BN, Moshage H, Slooff MJ, Meijer DK, Poelstra K, Groothuis GM: Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J Hepatol 2001, 35:187-194.
  • [169]Chen Y, Zhang H, Xu A, Li N, Liu J, Liu C, Lv D, Wu S, Huang L, Yang S, He D, Xiao X: Elevation of serum l-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer 2006, 54:95-102.
  • [170]Hussien R, Brooks GA: Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 2011, 43:255-264.
  • [171]Singh TD, Barbhuiya MA, Gupta S, Shrivastav BR, Jalaj V, Agarwal N, Tiwari PK: Quantitative Assessment of Expression of Lactate Dehydrogenase and its Isoforms 3 and 4 may Serve as Useful Indicators of Progression of Gallbladder Cancer: A Pilot Study. Indian J Clin Biochem 2011, 26:146-153.
  • [172]Chen Y, Zhang H, Xu A, Liu J, Li N, Wu S, Huang L, He D, Xiao X: Identification and clinical evaluation of lung cancer serum biomarker L-lactate dehydrogenase B. Zhonghua Jie He He Hu Xi Za Zhi 2007, 30:577-581.
  • [173]Gay O, Gilquin B, Pitaval A, Baudier J: Refilins: A link between perinuclear actin bundle dynamics and mechanosensing signaling. BioArchitecture 2011, 1:245-249.
  • [174]Le TH: Protein dynamics in responder and non-responder solid tumor xenografts during oncolytic viral therapy. PhD thesis. Bayerische Julius-Maximilians-Universität zu Würzburg; 2008.
  • [175]Yu N: The role of the P2Y2 nucleotide receptors in vascular inflammation. PhD thesis. University of Missouri; 2007.
  • [176]Zhong Z, Yeow W-S, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA: Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells. Cancer Res 2010, 70:2105-2114.
  • [177]Xu Y, Bismar TA, Su J, Xu B, Kristiansen G, Varga Z, Teng L, Ingber DE, Mammoto A, Kumar R, Alaoui-Jamali MA: Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 2010, 207:2421-2437.
  • [178]Stevenson RP, Veltman D, Machesky LM: Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012, 125:1073-1079.
  • [179]Gasparini G, Toi M, Biganzoli E, Dittadi R, Fanelli M, Morabito A, Boracchi P, Gion M: Thrombospondin-1 and −2 in Node-Negative Breast Cancer: Correlation with Angiogenic Factors, p53, Cathepsin D, Hormone Receptors and Prognosis. Oncology 2001, 60:72-80.
  • [180]Hyder SM, Liang Y, Wu J: Estrogen regulation of thrombospondin-1 in human breast cancer cells. Int J Cancer 2009, 125:1045-1053.
  • [181]Sargiannidou I, Zhou J, Tuszynski GP: The Role of Thrombospondin-1 in Tumor Progression. Exp Biol Med (Maywood) 2001, 226:726-733.
  • [182]Yee KO, Connolly CM, Duquette M, Kazerounian S, Washington R, Lawler J: The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 2009, 114:85-96.
  • [183]Lopez-Dee Z, Pidcock K, Gutierrez LS: Thrombospondin-1: Multiple Paths to Inflammation. Mediators Inflamm 2011, 2011:1-10.
  • [184]Rice AJ, Steward MA, Quinn CM: Thrombospondin 1 protein expression relates to good prognostic indices in ductal carcinoma in situ of the breast. J Clin Pathol 2002, 55:921-925.
  • [185]Alaoui-Jamali MA, Song DJ, Benlimame N, Yen L, Deng X, Hernandez-Perez M, Wang T: Regulation of multiple tumor microenvironment markers by overexpression of single or paired combinations of ErbB receptors. Cancer Res 2003, 63:3764-3774.
  • [186]Wang-Rodriguez J, Urquidi V, Rivard A, Goodison S: Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status. Breast Cancer Res 2003, 5:R136-R143. BioMed Central Full Text
  • [187]Fontana A, Filleur S, Guglielmi J, Frappart L, Bruno-Bossio G, Boissier S, Cabon F, Clézardin P: Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer 2005, 116:686-691.
  • [188]Manni A, Washington S, Mauger D, Hackett DA, Verderame MF: Cellular mechanisms mediating the anti-invasive properties of the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO) in human breast cancer cells. Clin Exp Metastasis 2004, 21:461-467.
  • [189]Suh EJ, Kabir MH, Kang U-B, Lee JW, Yu J, Noh D-Y, Lee C: Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers. Exp Mol Med 2012, 44:36-44.
  • [190]Leppilampi M, Koistinen P, Savolainen E-R, Hannuksela J, Parkkila A-K, Niemelä O, Pastoreková S, Pastorek J, Waheed A, Sly WS, Parkkila S, Rajaniemi H: The expression of carbonic anhydrase II in hematological malignancies. Clin Cancer Res 2002, 8:2240-2245.
  • [191]Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly WS: Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci U S A 2000, 97:2220-2224.
  • [192]Spiegelman VS, Tang W, Chan AM, Igarashi M, Aaronson SA, Sassoon DA, Katoh M, Slaga TJ, Fuchs SY: Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling. J Biol Chem 2002, 277:36624-36630.
  • [193]Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, Zsengeller ZK, Akhavan-Sharif MR, Khankin EV, Saintgeniez M, David S, Burstein D, Karumanchi SA, Stillman IE, Arany Z, Parikh SM: PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 2011, 121:4003-4014.
  • [194]Gao B-B, Phipps JA, Bursell D, Clermont AC, Feener EP: Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes. J Proteome Res 2009, 8:5541-5549.
  • [195]Putignani L, Raffa S, Pescosolido R, Rizza T, Del Chierico F, Leone L, Aimati L, Signore F, Carrozzo R, Callea F, Torrisi MR, Grammatico P: Preliminary evidences on mitochondrial injury and impaired oxidative metabolism in breast cancer. Mitochondrion 2012, 12:363-369.
  • [196]Suhane S, Berel D, Ramanujan VK: Biomarker signatures of mitochondrial NDUFS3 in invasive breast carcinoma. Biochem Biophys Res Commun 2011, 412:590-595.
  • [197]Kulawiec M, Owens KM, Singh KK: mtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice. J Hum Genet 2009, 54:647-654.
  • [198]Gerke V, Moss SE: Annexins: From Structure to Function. Physiol Rev 2002, 82:331-371.
  • [199]Stogbauer F, Weigert J, Neumeier M, Wanninger J, Sporrer D, Weber M, Schaffler A, Enrich C, Wood P, Grewal T, Aslanidis C, Buechler C: Annexin A6 is highly abundant in monocytes of obese and type 2 diabetic individuals and is downregulated by adiponectin in vitro. Exp Mol Med 2009, 41:501-507.
  • [200]Vilá De Muga S, Timpson P, Cubells L, Evans R, Hayes TE, Rentero C, Hegemann A, Reverter M, Leschner J, Pol A, Tebar F, Daly RJ, Enrich C, Grewal T: Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene 2009, 28:363-377.
  • [201]Sakwe AM, Koumangoye R, Guillory B, Ochieng J: Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res 2011, 317:823-837.
  • [202]Conroy SE, Latchman DS: Do heat shock proteins have a role in breast cancer? Br J Cancer 1996, 74:717-721.
  • [203]Nirdé P, Derocq D, Maynadier M, Chambon M, Basile I, Gary-Bobo M, Garcia M: Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 2010, 29:117-127.
  • [204]Yokota S, Chiba S, Furuyama H, Fujii N: Cerebrospinal fluids containing anti-HSP70 autoantibodies from multiple sclerosis patients augment HSP70-induced proinflammatory cytokine production in monocytic cells. J Neuroimmunol 2010, 218:129-133.
  • [205]Gan L, Liu D-B, Lu H-F, Long G-X, Mei Q, Hu G-Y, Qiu H, Hu G-Q: Decreased expression of the carboxyl terminus of heat shock cognate 70 interacting protein in human gastric cancer and its clinical significance. Onco Rep 2012, 28:1392-1398.
  • [206]Mizukami S, Kajiwara C, Ishikawa H, Katayama I, Yui K, Udono H: Both CD4+ and CD8+ T cell epitopes fused to heat shock cognate protein 70 (hsc70) can function to eradicate tumors. Cancer Sci 2008, 99:1008-1015.
  • [207]Hu J-Y, Li C-L, Wang Y-W: Altered proteomic pattern in platelets of rats with sepsis. Blood Cells Mol Dis 2012, 48:30-35.
  • [208]Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I: Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 2012, 1817:598-609.
  • [209]Huang T-C, Chang H-Y, Hsu C-H, Kuo W-H, Chang K-J, Juan H-F: Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 2008, 7:1433-1444.
  • [210]Willers IM, Isidoro A, Ortega AD, Fernández PL, Cuezva JM: Selective inhibition of beta-F1-ATPase mRNA translation in human tumours. Biochem J 2010, 426:319-326.
  • [211]Pan J, Sun L-C, Tao Y-F, Zhou Z, Du X-L, Peng L, Feng X, Wang J, Li Y-P, Liu L, Wu S-Y, Zhang Y-L, Hu S-Y, Zhao W-L, Zhu X-M, Lou G-L, Ni J: ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med 2011, 9:211. BioMed Central Full Text
  • [212]Chang HJ, Lee MR, Hong S-H, Yoo BC, Shin Y-K, Jeong JY, Lim S-B, Choi HS, Jeong S-Y, Park J-G: Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci 2007, 98:1184-1191.
  • [213]Hermeking H: The 14-3-3 cancer connection. Nat Rev Cancer 2003, 3:931-943.
  • [214]Butt AQ, Ahmed S, Maratha A, Miggin SM: 14-3-3{epsilon} and 14-3-3σ inhibit TLR-mediated pro-inflammatory cytokine induction. J Biol Chem 2012.
  • [215]Hodgkinson VC, Agarwal V, ELFadl D, Fox JN, McManus PL, Mahapatra TK, Kneeshaw PJ, Drew PJ, Lind MJ, Cawkwell L: Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteomics 2012, 75:2745-2752.
  • [216]Minamida S, Iwamura M, Kodera Y, Kawashima Y, Tabata K, Matsumoto K, Fujita T, Satoh T, Maeda T, Baba S: 14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal Bioanal Chem 2011, 401:245-252.
  • [217]Kim J-M, Noh E-M, Kwon K-B, Kim J-S, You Y-O, Hwang J-K, Hwang B-M, Kim B-S, Lee S-H, Lee SJ, Jung SH, Youn HJ, Lee Y-R: Curcumin suppresses the TPA-induced invasion through inhibition of PKCα-dependent MMP-expression in MCF-7 human breast cancer cells. Phytomedicine 2012, 19:1085-1092.
  • [218]Debelec-Butuner B, Alapinar C, Varisli L, Erbaykent-Tepedelen B, Hamid SM, Gonen-Korkmaz C, Korkmaz KS: Inflammation-mediated abrogation of androgen signaling: An in vitro model of prostate cell inflammation. Mol Carcinog 2012.
  • [219]Zhao Y, Kong X, Li X, Yan S, Yuan C, Hu W, Yang Q: Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells. PLoS One 2011, 6:e29363.
  • [220]Fatunmbi M, Shelton J, Aronica SM: MMP-9 increases HER2/neu expression and alters apoptosis levels in human mammary epithelial cells (HMEC). Breast Cancer Res Treat 2012, 135:519-530.
  • [221]Chakraborty S, Kaur S, Guha S, Batra SK: The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 2012, 1826:129-169.
  • [222]Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma V-M: Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 2004, 10:7621-7628.
  • [223]Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ: Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003, 83:433-473.
  • [224]Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R: Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 2000, 275:12041-12050.
  • [225]McSherry EA, Brennan K, Hudson L, Hill ADK, Hopkins AM: Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res 2011, 13:R31. BioMed Central Full Text
  • [226]Huttenlocher A, Horwitz AR: Integrins in cell migration. Cold Spring Harb Perspect Biol 2011, 3:a005074.
  • [227]Friedl P, Hegerfeldt Y, Tusch M: Collective cell migration in morphogenesis and cancer. Int J Dev Biol 2004, 48:441-449.
  • [228]Bullinger D, Neubauer H, Fehm T, Laufer S, Gleiter CH, Kammerer B: Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling. BMC Biochem 2007, 8:25. BioMed Central Full Text
  • [229]Buxton ILO, Yokdang N, Matz RM: Purinergic mechanisms in breast cancer support intravasation, extravasation and angiogenesis. Cancer Lett 2010, 291:131-141.
  • [230]Karve TM, Cheema AK: Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011, 2011:207691.
  • [231]Jin H, Zangar RC: Protein modifications as potential biomarkers in breast cancer. Biomark Insights 2009, 4:191-200.
  • [232]Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Martin-Castillo B, Menendez JA: Metformin and energy metabolism in breast cancer: from insulin physiology to tumour-initiating stem cells. Curr Mol Med 2010, 10:674-691.
  • [233]Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR III, Felding-Habermann B: Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 2007, 67:1472-1486.
  • [234]Budczies J, Denkert C, Müller BM, Brockmöller SF, Klauschen F, Györffy B, Dietel M, Richter-Ehrenstein C, Marten U, Salek RM, Griffin JL, Hilvo M, Orešič M, Wohlgemuth G, Fiehn O: Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics 2012, 13:334. BioMed Central Full Text
  • [235]Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP: Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 2012, 11:422-434.
  • [236]Seyfried TN, Shelton LM: Cancer as a metabolic disease. Nutr Metab (Lond) 2010, 7:7. BioMed Central Full Text
  • [237]Mira-Y-Lopez R, Zheng WL, Kuppumbatti YS, Rexer B, Jing Y, Ong DE: Retinol conversion to retinoic acid is impaired in breast cancer cell lines relative to normal cells. J Cell Physiol 2000, 185:302-309.
  • [238]Welsh J: Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Endocrinol 2011, 347:55-60.
  • [239]Verma M, Kagan J, Sidransky D, Srivastava S: Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 2003, 3:789-795.
  • [240]Solazzo M, Fantappiè O, D’Amico M, Sassoli C, Tani A, Cipriani G, Bogani C, Formigli L, Mazzanti R: Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res 2009, 69:7235-7242.
  • [241]Chen Y-W, Chou H-C, Lyu P-C, Yin H-S, Huang F-L, Chang W-SW, Fan C-Y, Tu I-F, Lai T-C, Lin S-T, Lu Y-C, Wu C-L, Huang S-H, Chan H-L: Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers. Funct Integr Genomics 2011, 11:225-239.
  • [242]Talhouk R: On cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2012, 4:a013540.
  • [243]Manda G, Nechifor MT, Neagu T-M: Reactive Oxygen Species, Cancer and Anti-Cancer Therapies. Curr Chem Biol 2009, 3:342-366.
  • [244]Acharya A, Das I, Chandhok D, Saha T: Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 2010, 3:23-34.
  • [245]Poole LB, Hall A, Nelson KJ: Overview of peroxiredoxins in oxidant defense and redox regulation. Curr Protoc Toxicol 2011, 7:Unit7.9.
  • [246]Sainz RM, Lombo F, Mayo JC: Radical Decisions in Cancer: Redox Control of Cell Growth and Death. Cancers 2012, 4:442-474.
  • [247]Zhang D, Tai LK, Wong LL, Chiu L-L, Sethi SK, Koay ESC: Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 2005, 4:1686-1696.
  • [248]Stresing V, Baltziskueta E, Rubio N, Blanco J, Arriba M, Valls J, Janier M, Clézardin P, Sanz-Pamplona R, Nieva C, Marro M, Dmitri P, Sierra A: Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human metastatic breast cancer cells in lungs. Oncogene 2013, 32:724-735.
  • [249]Feldman DE, Chauhan V, Koong AC: The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 2005, 3:597-605.
  • [250]Curtis CD, Thorngren DL, Nardulli AM: Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 2010, 10:9. BioMed Central Full Text
  • [251]Dressing GE, Lange CA: Integrated actions of progesterone receptor and cell cycle machinery regulate breast cancer cell proliferation. Steroids 2009, 74:573-576.
  • [252]Roberti A, Macaluso M, Giordano A: Alterations in Cell Cycle Regulatory Genes in Breast Cancer. In Breast Cancer in the Post-Genomic Era. Edited by Giordano A, Normanno N. Totowa, NJ: Humana Press; 2009:55-77.
  • [253]Abraham RT: Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001, 15:2177-2196.
  • [254]Calderwood SK: Heat shock proteins in breast cancer progression–a suitable case for treatment? Int J Hyperthermia 2010, 26:681-685.
  • [255]Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jäättelä M: Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci U S A 2000, 97:7871-7876.
  • [256]Rehman A, Chahal MS, Tang X, Bruce JE, Pommier Y, Daoud SS: Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells. Breast Cancer Res 2005, 7:R765-R774. BioMed Central Full Text
  • [257]Caldewood SK, Sherman MY, Ciocca DR (Eds): Heat Shock Proteins in Cancer. Dordrecht: Springer; 2010.
  • [258]Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C: Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2007, 81:15-27.
  • [259]Wu J, Shao Z-M, Shen Z-Z, Lu J-S, Han Q-X, Fontana JA, Barsky SH: Significance of Apoptosis and Apoptotic-Related Proteins, Bcl-2, and Bax in Primary Breast Cancer. Breast J 2000, 6:44-52.
  • [260]Baekelandt M, Holm R, Nesland JM, Tropé CG, Kristensen GB: Expression of apoptosis-related proteins is an independent determinant of patient prognosis in advanced ovarian cancer. J Clin Oncol 2000, 18:3775-3781.
  • [261]Yang M, Yuan F, Li P, Chen Z, Chen A, Li S, Hu C: Interferon regulatory factor 4 binding protein is a novel p53 target gene and suppresses cisplatin-induced apoptosis of breast cancer cells. Mol Cancer 2012, 11:54. BioMed Central Full Text
  • [262]Perik PJ, Van der Graaf WTA, De Vries EGE, Boomsma F, Messerschmidt J, Van Veldhuisen DJ, Sleijfer DT, Gietema JA: Circulating apoptotic proteins are increased in long-term disease-free breast cancer survivors. Acta Oncol 2006, 45:175-183.
  • [263]Vejda S, Posovszky C, Zelzer S, Peter B, Bayer E, Gelbmann D, Schulte-Hermann R, Gerner C: Plasma from cancer patients featuring a characteristic protein composition mediates protection against apoptosis. Mol Cell Proteomics 2002, 1:387-393.
  • [264]Deryugina EI, Quigley JP: Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25:9-34.
  • [265]Mangia A, Malfettone A, Rossi R, Paradiso A, Ranieri G, Simone G, Resta L: Tissue remodelling in breast cancer: human mast cell tryptase as an initiator of myofibroblast differentiation. Histopathology 2011, 58:1096-1106.
  • [266]Parashurama N, Lobo NA, Ito K, Mosley AR, Habte FG, Zabala M, Smith BR, Lam J, Weissman IL, Clarke MF, Gambhir SS: Remodeling of endogenous mammary epithelium by breast cancer stem cells. Stem Cells 2012, 30:2114-2127.
  • [267]Kim BG, Gao M-Q, Choi YP, Kang S, Park HR, Kang KS, Cho NH: Invasive breast cancer induces laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype during tissue remodeling. Breast Cancer Res Treat 2012, 14:R88. BioMed Central Full Text
  • [268]Timmermans AM, Montazeri H, Trapman-Jansen AM, Martens JW, Foekens JA, Umar A: Abstract 806: Extracellular matrix metalloprotease inducer (EMMPRIN) and CD44 protein complexes are exclusively formed in basal- and normal-like breast cancer cell lines. Cancer Res 2012, 72:806-806.
  • [269]Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM: Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 2003, 5:533-545.
  • [270]Imai Y, Ohmori K, Yasuda S, Wada M, Suzuki T, Fukuda K, Ueda Y: Breast cancer resistance protein/ABCG2 is differentially regulated downstream of extracellular signal-regulated kinase. Cancer Sci 2009, 100:1118-1127.
  • [271]Celis JE, Moreira JMA, Cabezón T, Gromov P, Friis E, Rank F, Gromova I: Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 2005, 4:492-522.
  • [272]Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ: Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev 2006, 30:118-128.
  • [273]Malhotra GK, Zhao X, Band H, Band V: Shared signaling pathways in normal and breast cancer stem cells. J Carcinog 2011, 10:38.
  • [274]Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A: Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 2012, 38:698-707.
  • [275]Thomson CA: Diet and breast cancer: understanding risks and benefits. Nutr Clin Pract 2012, 27:636-650.
  • [276]Giacosa A, Barale R, Bavaresco L, Gatenby P, Gerbi V, Janssens J, Johnston B, Kas K, La Vecchia C, Mainguet P, Morazzoni P, Negri E, Pelucchi C, Pezzotti M, Rondanelli M: Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev 2013, 22:90-95.
  • [277]Raouf A, Sun Y, Chatterjee S, Basak P: The biology of human breast epithelial progenitors. Semin Cell Dev Biol 2012, 23:606-612.
  • [278]Pallavi R, Giorgio M, Pelicci PG: Insights into the beneficial effect of caloric/ dietary restriction for a healthy and prolonged life. Front Physiol 2012, 3:318.
  • [279]Cole SW: Chronic inflammation and breast cancer recurrence. J Clin Oncol 2009, 27:3418-3419.
  • [280]Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005, 365:1687-1717.
  • [281]Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235:177-182.
  • [282]Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN: The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009, 14:320-368.
  • [283]De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E, Malorni L, Zinno L, Lauria R, Bianco AR, De Placido S: A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 2005, 11:4741-4748.
  • [284]Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, Broadwater G, Goldstein LJ, Martino S, Ingle JN, Henderson IC, Norton L, Winer EP, Hudis CA, Ellis MJ, Berry DA: HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med 2007, 357:1496-1506.
  • [285]Pritchard KI, Shepherd LE, O’Malley FP, Andrulis IL, Tu D, Bramwell VH, Levine MN: HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 2006, 354:2103-2111.
  • [286]Gianni L, Pienkowski T, Im Y-H, Roman L, Tseng L-M, Liu M-C, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im S-A, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P: Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012, 13:25-32.
  • [287]Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344:783-792.
  • [288]Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006, 355:2733-2743.
  • [289]Urruticoechea A, Smith IE, Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol 2005, 23:7212-7220.
  • [290]Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA: Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010, 11:174-183.
  • [291]Chang J, Powles TJ, Allred DC, Ashley SE, Makris A, Gregory RK, Osborne CK, Dowsett M: Prediction of clinical outcome from primary tamoxifen by expression of biologic markers in breast cancer patients. Clin Cancer Res 2000, 6:616-621.
  • [292]Fasching PA, Heusinger K, Haeberle L, Niklos M, Hein A, Bayer CM, Rauh C, Schulz-Wendtland R, Bani MR, Schrauder M, Kahmann L, Lux MP, Strehl JD, Hartmann A, Dimmler A, Beckmann MW, Wachter DL: Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011, 11:486. BioMed Central Full Text
  • [293]Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn H-J: Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011, 22:1736-1747.
  • [294]Harbeck N, Dettmar P, Thomssen C, Henselmann B, Kuhn W, Ulm K, Jänicke F, Höfler H, Graeff H, Schmitt M: Prognostic impact of tumor biological factors on survival in node-negative breast cancer. Anticancer Res 1998, 18:2187-2197.
  • [295]Jänicke F, Schmitt M, Pache L, Ulm K, Harbeck N, Höfler H, Graeff H: Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 1993, 24:195-208.
  • [296]Annecke K, Schmitt M, Euler U, Zerm M, Paepke D, Paepke S, von Minckwitz G, Thomssen C, Harbeck N: uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 2008, 45:31-45.
  • [297]Jänicke F, Prechtl A, Thomssen C, Harbeck N, Meisner C, Untch M, Sweep CG, Selbmann HK, Graeff H, Schmitt M: Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 2001, 93:913-920.
  • [298]Adjuvant! Online. [http://www.adjuvantonline.com/index.jsp webcite]
  • [299]Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM, Armstrong N, Van’t Veer LJ, Ravdin PM: Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol 2009, 10:1070-1076.
  • [300]Olivotto IA, Bajdik CD, Ravdin PM, Speers CH, Coldman AJ, Norris BD, Davis GJ, Chia SK, Gelmon KA: Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 2005, 23:2716-2725.
  • [301]Ozanne EM, Braithwaite D, Sepucha K, Moore D, Esserman L, Belkora J: Sensitivity to input variability of the Adjuvant! Online breast cancer prognostic model. J Clin Oncol 2009, 27:214-219.
  • [302]Eastern Cancer Registry and Information Centre: PREDICT. [http://www.predict.nhs.uk/ webcite]
  • [303]Wishart GC, Bajdik CD, Azzato EM, Dicks E, Greenberg DC, Rashbass J, Caldas C, Pharoah PDP: A population-based validation of the prognostic model PREDICT for early breast cancer. Eur J Surg Oncol 2011, 37:411-417.
  • [304]Wishart GC, Bajdik CD, Dicks E, Provenzano E, Schmidt MK, Sherman M, Greenberg DC, Green AR, Gelmon KA, Kosma V-M, Olson JE, Beckmann MW, Winqvist R, Cross SS, Severi G, Huntsman D, Pylkäs K, Ellis I, Nielsen TO, Giles G, Blomqvist C, Fasching PA, Couch FJ, Rakha E, Foulkes WD, Blows FM, Bégin LR, Van’t Veer LJ, Southey M, Nevanlinna H, Mannermaa A, Cox A, Cheang M, Baglietto L, Caldas C, Garcia-Closas M, Pharoah PDP: PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer 2012, 107:800-807.
  • [305]Cheang MCU, van de Rijn M, Nielsen TO: Gene expression profiling of breast cancer. Annu Rev Pathol 2008, 3:67-97.
  • [306]Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature 2000, 406:747-752.
  • [307]Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L: Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005, 11:5678-5685.
  • [308]Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JGM, Foekens JA, Martens JWM: Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008, 68:3108-3114.
  • [309]Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001, 98:10869-10874.
  • [310]Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004, 351:2817-2826.
  • [311]Veer LJV’t, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.
  • [312]Buyse M, Loi S, Van’t Veer L, Viale G, Delorenzi M, Glas AM, D’ Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ: Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006, 98:1183-1192.
  • [313]van de Vijver MJ, He YD, Veer LJ V, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
  • [314]Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJT, Vrancken Peeters M-JTFD, van Tinteren H, Van’t Veer LJ, Rodenhuis S: The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 2010, 119:551-558.
  • [315]Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N: Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006, 24:3726-3734.
  • [316]Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh I-T, Ravdin P, Bugarini R, Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF: Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 2010, 11:55-65.
  • [317]Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LVT, Rubio IT, Viale G, Thompson AM, Passalacqua R, Nitz U, Vindevoghel A, Pierga J-Y, Ravdin PM, Werutsky G, Cardoso F: The EORTC 10041/BIG 03–04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer 2011, 47:2742-2749.
  • [318]Sparano JA, Paik S: Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008, 26:721-728.
  文献评价指标  
  下载次数:125次 浏览次数:432次