期刊论文详细信息
Epigenetics & Chromatin
lobChIP: from cells to sequencing ready ChIP libraries in a single day
Claes Wadelius3  Lisa Borghini4  Madhusudhan Bysani2  Helena Nord3  Ola Wallerman1 
[1] Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden;Department of Clinical Sciences, CRC, Lund University Diabetes Center, Malmö, Sweden;Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Uppsala University, Uppsala, 75108, Sweden;Human Genetics, Genome Institute of Singapore, Singapore, Singapore
关键词: Library preparation;    NGS;    Illumina;    Chromatin immunoprecipitation;    ChIP-seq;   
Others  :  1221287
DOI  :  10.1186/s13072-015-0017-5
 received in 2015-06-22, accepted in 2015-07-08,  发布年份 2015
PDF
【 摘 要 】

Background

ChIP-seq is the method of choice for genome-wide studies of protein–DNA interactions. We describe a new method for ChIP-seq sample preparation, termed lobChIP, where the library reactions are performed on cross-linked ChIP fragments captured on beads.

Results

The lobChIP method was found both to reduce time and cost and to simplify the processing of many samples in parallel. lobChIP has an early incorporation of barcoded sequencing adaptors that minimizes the risk of sample cross-contamination and can lead to reduced amount of adaptor dimers in the sequencing libraries, while allowing for direct decross-linking and amplification of the sample.

Conclusions

With results for histone modifications and transcription factors, we show that lobChIP performs equal to or better than standard protocols and that it makes it possible to go from cells to sequencing ready libraries within a single day.

【 授权许可】

   
2015 Wallerman et al.

【 预 览 】
附件列表
Files Size Format View
20150729034633993.pdf 2725KB PDF download
Figure4. 41KB Image download
Figure3. 64KB Image download
Figure2. 53KB Image download
Figure1. 53KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

【 参考文献 】
  • [1]Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A et al.. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013; 342(6159):744-747.
  • [2]Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007; 316(5830):1497-1502.
  • [3]O’Geen H, Echipare L, Farnham PJ. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol. 2011; 791:265-286.
  • [4]An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414):57-74.
  • [5]Solomon MJ, Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A. 1985; 82(19):6470-6474.
  • [6]Hoeijmakers WA, Bartfai R, Francoijs KJ, Stunnenberg HG. Linear amplification for deep sequencing. Nat Protoc. 2011; 6(7):1026-1036.
  • [7]Wallerman O, Motallebipour M, Enroth S, Patra K, Bysani MS, Komorowski J et al.. Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing. Nucleic Acids Res. 2009; 37(22):7498-7508.
  • [8]Motallebipour M, Ameur A, Reddy Bysani MS, Patra K, Wallerman O, Mangion J et al.. Differential binding and co-binding pattern of FOXA1 and FOXA3 and their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq. Genome Biol. 2009; 10(11):R129. BioMed Central Full Text
  • [9]Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M et al.. Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol. 2012; 13(9):R52. BioMed Central Full Text
  • [10]Aldridge S, Watt S, Quail MA, Rayner T, Lukk M, Bimson MF et al.. AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation. Genome Biol. 2013; 14(11):R124. BioMed Central Full Text
  • [11]Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M et al.. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell. 2012; 47(5):810-822.
  • [12]Gasper WC, Marinov GK, Pauli-Behn F, Scott MT, Newberry K, DeSalvo G et al.. Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: identifying ChIP-quality p300 monoclonal antibodies. Sci Rep. 2014; 4:5152.
  • [13]Berguet G, Hendrickx J, Sabatel C, Laczik M, Squazzo S, Mazon Pelaez I, et al. Automating ChIP-seq experiments to generate epigenetic profiles on 10,000 HeLa cells. J Vis Exp. 2014;(94). doi:10.3791/52150.
  • [14]Peng X, Wu J, Brunmeir R, Kim SY, Zhang Q, Ding C et al.. TELP, a sensitive and versatile library construction method for next-generation sequencing. Nucleic Acids Res. 2015; 43(6):e35.
  • [15]Nelson JD, Denisenko O, Sova P, Bomsztyk K. Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 2006; 34(1):e2.
  • [16]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-1760.
  • [17]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2093.
  • [18]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al.. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137. BioMed Central Full Text
  • [19]Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27(12):1696-1697.
  • [20]Ye T, Krebs AR, Choukrallah MA, Keime C, Plewniak F, Davidson I et al.. seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res. 2011; 39(6):e35.
  文献评价指标  
  下载次数:21次 浏览次数:11次