期刊论文详细信息
EvoDevo
Expression of Hox genes during regeneration of nereid polychaete Alitta (Nereis) virens (Annelida, Lophotrochozoa)
Milana A Kulakova1  Alexander Y Nesterenko1  Nadezhda I Bakalenko1  Elena L Novikova1 
[1] Department of Embryology, Laboratory of Experimental Embryology, Saint-Petersburg State University, Oranienbaumskoe sh., 2, Petergof, Saint Petersburg, Russia
关键词: Lophotrochozoa;    Polychaetes;    Positional information;    Hox genes;    ncRNA;    Regeneration;   
Others  :  806704
DOI  :  10.1186/2041-9139-4-14
 received in 2012-11-29, accepted in 2013-02-05,  发布年份 2013
PDF
【 摘 要 】

Background

Hox genes are the key determinants of different morphogenetic events in all bilaterian animals. These genes are probably responsible for the maintenance of regenerative capacities by providing positional information in the regenerating animal body. Polychaetes are well known for their ability to regenerate the posterior as well as the anterior part of the body. We have recently described the expression of 10 out of 11 Hox genes during postlarval growth of Alitta (Nereis) virens. Hox genes form gradient overlapping expression patterns, which probably do not contribute to the morphological diversity of segments along the anterior-posterior axis of the homonomously segmented worm. We suggest that this gradient expression of Hox genes establishes positional information along the body that can be used to maintain coordinated growth and regeneration.

Results

We showed that most of the Hox gene expression patterns are reorganized in the central nervous system, segmental ectoderm and mesoderm. The reorganization takes place long before regeneration becomes apparent. The most rapid reorganization was observed for the genes with the largest differences in expression levels in the amputation site and the terminal structures (pygidium and growth zone). Moreover, we revealed the expression of two antisense Hox RNAs (Nvi-antiHox5 and Nvi-antiHox7) demonstrating unique expression patterns during regeneration.

Conclusions

Hox genes probably participate in the maintenance and restoration of the positional information in A. virens. During postlarval growth and regeneration, Hox genes do not alter the diversity of segments but provide the positional information along the anterior-posterior axis. The reorganization of at least some Hox gene patterns during regeneration may be regulated by their anti-sense transcripts, providing a rapid response of Hox gene transcripts to positional failure. The capacity of Hox genes to maintain the positional information in the adult body is present in different bilaterian animals (planarias, polychaetes and mammals) and might be an ancestral function inherited from the common evolutionary remote ancestor.

【 授权许可】

   
2013 Novikova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708095352817.pdf 2197KB PDF download
Figure 13. 94KB Image download
Figure 12. 96KB Image download
Figure 11. 90KB Image download
Figure 10. 88KB Image download
Figure 9. 97KB Image download
Figure 8. 94KB Image download
Figure 7. 100KB Image download
Figure 6. 91KB Image download
Figure 5. 94KB Image download
Figure 4. 94KB Image download
Figure 3. 88KB Image download
Figure 2. 88KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

【 参考文献 】
  • [1]Korotkova GP: Animal Regeneration. Saint-Petersburg: Saint-Petersburg University Press; 1997. [Book in Russian]
  • [2]Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S: Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 2002, 114(1–2):27-35.
  • [3]Bryant SV, Endo T, Gardiner DM: Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 2002, 46:887-896.
  • [4]Thummel R, Ju M, Sarras MP Jr, Godwin AR: Both Hoxc13 orthologs are functionally important for zebrafish tail fin regeneration. Dev Genes Evol 2007, 217(6):413-420.
  • [5]Han M, Yang X, Lee J, Allan CH, Muneoka K: Development and regeneration of the neonatal digit tip in mice. Dev Biol 2008, 315(1):125-135.
  • [6]Gierer A: The Hydra model – a model for what? Int J Dev Biol 2012, 56(6–8):437-445.
  • [7]Egger B, Gschwentner R, Rieger R: Free-living flatworms under the knife: past and present. Dev Genes Evol 2007, 217(2):89-104.
  • [8]Awgulewitsch A: Hox in hair growth and development. Naturwissenschaften 2003, 90:193-211.
  • [9]Brun AC, Björnsson JM, Magnusson M, Larsson N, Leveén P, Ehinger M, Nilsson E, Karlsson S: Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 2004, 103(11):4126-4133.
  • [10]Morgan R, Whiting K: Differential expression of HOX genes upon activation of leukocyte sub-populations. Int J Hematol 2008, 87(3):246-249.
  • [11]Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA: Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 2008, 135(17):2845-2854.
  • [12]Mahdipour E, Mace KA: Hox transcription factor regulation of adult bone-marrow-derived cell behaviour during tissue repair and regeneration. Expert Opin Biol Ther 2011, 11(8):1079-1090.
  • [13]Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu IM: Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development 1993, 119:353-361.
  • [14]Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM: Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 1996, 122(11):3487-3497.
  • [15]Imokawa Y, Yoshizato K: Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci USA 1997, 94(17):9159-9164.
  • [16]Endo T, Bryant SV, Gardiner DM: A stepwise model system for limb regeneration. Dev Biol 2004, 270:135-145.
  • [17]Akam M: Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 1998, 42(3):445-451.
  • [18]Castelli-Gair J: Implications of the spatial and temporal regulation of Hox genes on development and evolution. Int J Dev Biol 1998, 42(3):437-444.
  • [19]Gardiner DM, Bryant SV: Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol 1996, 40(4):797-805.
  • [20]Orii H, Kato K, Umesono Y, Sakurai T, Agata K, Watanabe K: The planarian Hom/Hox Homeobox genes (Plox) expressed along the anteroposterior axis. Dev Biol 1999, 210:456-468.
  • [21]Nogi T, Watanabe K: Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Develop Growth Differ 2001, 43:117-184.
  • [22]Christen B, Beck CW, Lombardo A, Slack JM: Regeneration-specific expression pattern of three posterior Hox genes. Dev Dyn 2003, 226(2):349-355.
  • [23]Chung N, Jee BK, Chae SW, Jeon YW, Lee KH, Rha HK: HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 2009, 36(2):227-235.
  • [24]Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO: Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 2002, 99(20):12877-12882.
  • [25]Wang KC, Helms JA, Chang HY: Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 2009, 19(6):268-275.
  • [26]Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmetz PR, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T: Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 2007, 217(1):39-54.
  • [27]Dondua AK: Effect of actinomycin D and sibiromycin on the embryonic and larval development of Nereis virens (Sars.). Ontogenez 1975, 6(5):475-484. Article in Russian
  • [28]Irvine SQ, Chaga O, Martindale MQ: Larval ontogenetic stages of Chaetopterus: developmental heterochrony in the evolution of chaetopterid polychaetes. Biol Bull 1999, 197(3):319-331.
  • [29]Pfeifer K, Dorresteijn AW, Fröbius AC: Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Dev Genes Evol 2012, 222(3):165-179.
  • [30]Nicolas S, Papillon D, Perez Y, Caubit X, Le Parco Y: The spatial restrictions of 5′HoxC genes expression are maintained in adult newt spinal cord. Biol Cell 2003, 95(9):589-594.
  • [31]Savard P, Gates PB, Brockes JP: Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration. EMBO J 1988, 7(13):4275-4282.
  • [32]Simon HG, Tabin CJ: Analysis of Hox-4. 5 and Hox-3. 6 expression during newt limb regeneration, differential regulation of paralogous Hox genes suggests different roles for members of different Hox clusters. Development 1993, 117(1):397-1407.
  • [33]Yokoyama H: Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Differ 2008, 50(1):13-22.
  • [34]Limura T, Pourquie O: Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 2006, 442(7102):568-571.
  • [35]Stern CD, Charité J, Deschamps J, Duboule D, Durston AJ, Kmita M, Nicolas JF, Palmeirim I, Smith JC, Wolpert L: Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems? Int J Dev Biol 2006, 50(1):3-15.
  • [36]de Rosa R, Prud’homme B, Balavoine G: Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 2005, 7(6):574-587.
  • [37]Boilly B, Lheureux E, Boilly-Marer Y, Bart A: Cell interactions and regeneration control. Int J Dev Biol 1990, 34(1):219-231.
  • [38]Ito H, Saito Y, Watanabe K, Orii H: Epimorphic regeneration of the distal part of the planarian pharynx. Dev Genes Evol 2001, 211:2-9.
  • [39]Reddien PW, Sánchez Alvarado A: Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 2004, 20:725-757.
  • [40]Kulakova MA, Cook CE, Andreeva TF: ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa). BMC Dev Biol 2008, 8:61. BioMed Central Full Text
  • [41]Freund J-N, Domon-Dell C, Kedinger M, Duluc I: The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1998, 76:957-969.
  • [42]Hunter CP, Harris JM, Maloof JN, Kenyon C: Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit wnt signaling. Development 1999, 126(4):805-814.
  • [43]Moran VA, Perera RJ, Khalil AM: Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 2012, 40(14):6391-6400.
  • [44]Brena C, Chipman AD, Minelli A, Akam M: Expression of trunk Hox genes in the centipede Strigamia maritima: sense and anti-sense transcripts. Evol Dev 2006, 8(3):252-265.
  • [45]Janssen R, Budd GE: Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. Evodevo 2010, 1(1):4. BioMed Central Full Text
  • [46]Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR: Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003, 34(2):157-165.
  • [47]Petruk S, Sedkov Y, Riley KM, Hodgson J, Schweisguth F, Hirose S, Jaynes JB, Brock HW, Mazo A: Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 2006, 127:1209-1221.
  • [48]Okamura K, Balla S, Martin R, Liu N, Lai EC: Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 2008, 15:998.
  文献评价指标  
  下载次数:46次 浏览次数:14次