期刊论文详细信息
Journal for ImmunoTherapy of Cancer
Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy
Jedd D Wolchok2  Daniel Hirschhorn-Cymerman1  David A Schaer3 
[1] Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA;Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;Current address: Department of Cancer Immunobiology, ImClone Systems, a wholly-owned subsidiary of Eli Lilly & Co, New York, NY 10016, USA
关键词: GITR;    OX40;    4-1BB;    Immunotherapy;    Cancer;   
Others  :  812414
DOI  :  10.1186/2051-1426-2-7
 received in 2014-01-16, accepted in 2014-03-13,  发布年份 2014
PDF
【 摘 要 】

With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.

【 授权许可】

   
2014 Schaer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709084040261.pdf 269KB PDF download
【 参考文献 】
  • [1]Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010, 363:711-723.
  • [2]DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T: Expression of tumour-specific antigens underlies cancer immunoediting. Nature 2012, 482:405-409.
  • [3]Schreiber RD, Old LJ, Smyth MJ: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331:1565-1570.
  • [4]Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002, 3:991-998.
  • [5]Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD: Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012, 482:400-404.
  • [6]Draghiciu O, Nijman HW, Daemen T: From tumor immunosuppression to eradication: targeting homing and activity of immune effector cells to tumors. Clin Dev Immunol 2011, 2011:439053.
  • [7]Mellman I, Coukos G, Dranoff G: Cancer immunotherapy comes of age. Nature 2011, 480:480-489.
  • [8]Töpfer K, Kempe S, Müller N, Schmitz M, Bachmann M, Cartellieri M, Schackert G, Temme A: Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011, 2011:918471.
  • [9]Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF: Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha} + dendritic cells. J Exp Med 2011, 208:2005-2016.
  • [10]Zou W: Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005, 5:263-274.
  • [11]Schaer DA, Li Y, Merghoub T, Rizzuto GA, Shemesh A, Cohen AD, Li Y, Avogadri F, Toledo-Crow R, Houghton AN, Wolchok JD: Detection of intra-tumor self antigen recognition during melanoma tumor progression in mice using advanced multimode confocal/two photon microscope. PLoS One 2011, 6:e21214.
  • [12]Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R: Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994, 1:793-801.
  • [13]Teft WA, Kirchhof MG, Madrenas J: A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006, 24:65-97.
  • [14]Krummel MF, Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995, 182:459-465.
  • [15]Korman A, Yellin M, Keler T: Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr Opin Investig Drugs 2005, 6:582-591.
  • [16]Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF, Xu Y, Pogoriler E, Terzulli SL, Kuk D, Panageas KS, Ritter G, Sznol M, Halaban R, Jungbluth AA, Allison JP, Old LJ, Wolchok JD, Gnjatic S: Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 2011, 108:16723-16728.
  • [17]Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000, 192:1027-1034.
  • [18]Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL: SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004, 173:945-954.
  • [19]Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006, 439:682-687.
  • [20]Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012, 366:2443-2454.
  • [21]Topalian SL, Brahmer JR, Hodi FS, McDermott DF, Smith DC, Gettinger S, Taube JM, Gupta A, Wigginton JM, Sznol M: Anti-programmed death-1 (PD-1) (BMS-936558/MDX-1106/ONO-4538) in patients with advanced solid tumors: clinical activity, safety, and molecular markers [Abstract]. Annals Oncol 2012, 23(suppl 9):xi157.
  • [22]Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M: Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013, 369:122-133.
  • [23]Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008, 14:3044-3051.
  • [24]Patnaik A, Kang SP, Tolcher AW, Rasco DW, Papadopoulos KP, Beeram M, Drengler R, Chen C, Smith L, Perez C, Gergich K, Lehnert M: Phase I study of MK-3475 (anti-PD-1 monoclonal antibody) in patients with advanced solid tumors [Abstract]. J Clin Oncol 2012., 30(Suppl abstr 2512)
  • [25]MedImmune joins forces with leading cancer organizations to advance novel immunotherapy research [press release] https://www.medimmune.com/media/press-releases/2012/10/09/medimmune-joins-forces-with-leading-cancer-organizations-to-advance-novel-immunotherapy-research webcite
  • [26]Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012, 366:2455-2465.
  • [27]GlaxoSmithKline and Amplimmune form global strategic collaboration [press release] http://www.prnewswire.com/news-releases/glaxosmithkline-and-amplimmune-form-global-strategic-collaboration-99938599.html webcite
  • [28]Watts TH: TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 2005, 23:23-68.
  • [29]So T, Lee SW, Croft M: Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. Int J Hematol 2006, 83:1-11.
  • [30]Kwon BS, Weissman SM: cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A 1989, 86:1963-1967.
  • [31]Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS: Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 1993, 150:771-781.
  • [32]Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS: 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 1997, 186:47-55.
  • [33]Wilcox RA, Chapoval AI, Gorski KS, Otsuji M, Shin T, Flies DB, Tamada K, Mittler RS, Tsuchiya H, Pardoll DM, Chen L: Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 2002, 168:4262-4267.
  • [34]McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC: CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002, 16:311-323.
  • [35]Vinay DS, Kwon BS: 4-1BB signaling beyond T cells. Cell Mol Immunol 2011, 8:281-284.
  • [36]Vinay DS, Kwon BS: Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 2012, 11:1062-1070.
  • [37]Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, DeBenedette MA, Mak TW, Choi Y, Watts TH: CD28-independent, TRAF2-dependent costimulation of resting T cells by 4–1BB ligand. J Exp Med 1998, 187:1849-1862.
  • [38]Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS: 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 2002, 169:4882-4888.
  • [39]Stärck L, Scholz C, Dörken B, Daniel PT: Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIP(short) via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur J Immunol 2005, 35:1257-1266.
  • [40]Hernandez-Chacon JA, Li Y, Wu RC, Bernatchez C, Wang Y, Weber J, Hwu P, Radvanyi LG: Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function. J Immunother 2011, 34:236-250.
  • [41]Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellström KE, Mittler RS, Chen L: Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 1997, 3:682-685.
  • [42]Sabel MS, Conway TF, Chen FA, Bankert RB: Monoclonal antibodies directed against the T-cell activation molecule CD137 (interleukin-A or4-1BB) block human lymphocyte-mediated suppression of tumor xenografts in severe combined immunodeficient mice. J Immunother 2000, 23:362-368.
  • [43]Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R, Shu S: Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 2001, 61:2031-2037.
  • [44]Lin GH, Liu Y, Ambagala T, Kwon BS, Ohashi PS, Watts TH: Evaluating the cellular targets of anti-4-1BB agonist antibody during immunotherapy of a pre-established tumor in mice. PLoS One 2010, 5:e11003.
  • [45]Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ: Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 2006, 12:693-698.
  • [46]Takeda K, Kojima Y, Uno T, Hayakawa Y, Teng MW, Yoshizawa H, Yagita H, Gejyo F, Okumura K, Smyth MJ: Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. J Immunol 2010, 184:5493-5501.
  • [47]Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP: Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS One 2011, 6:e19499.
  • [48]Youlin K, Li Z, Xiaodong W, Xiuheng L, Hengchen Z: Combination immunotherapy with 4–1 BBL and CTLA-4 blockade for the treatment of prostate cancer. Clin Dev Immunol 2012, 2012:439235.
  • [49]Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, Colevas AD, Weng WK, Clarke MF, Carlson RW, Stockdale FE, Mollick JA, Chen L, Levy R: Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest 2012, 122:1066-1075.
  • [50]Shi W, Siemann DW: Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res 2006, 26:3445-3453.
  • [51]Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, Duret H, Yagita H, Johnstone RW, Smyth MJ, Haynes NM: Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 2012, 72:3163-3174.
  • [52]Dubrot J, Palazón A, Alfaro C, Azpilikueta A, Ochoa MC, Rouzaut A, Martinez-Forero I, Teijeira A, Berraondo P, Le Bon A, Hervás-Stubbs S, Melero I: Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy. Int J Cancer 2011, 128:105-118.
  • [53]Lee H, Park HJ, Sohn HJ, Kim JM, Kim SJ: Combinatorial therapy for liver metastatic colon cancer: dendritic cell vaccine and low-dose agonistic anti-4-1BB antibody co-stimulatory signal. J Surg Res 2011, 169:e43-e50.
  • [54]Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I: Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 2010, 37:508-516.
  • [55]Hwu W-J: Targeted therapy for metastatic melanoma: from bench to bedside. http://www.healio.com/hematology-oncology/melanoma-skin-cancer/news/print/hematology-oncology/%7B77E71A11-1FD1-4193-A2F7-7C50C6121C1F%7D/Targeted-therapy-for-metastatic-melanoma-From-bench-to-bedside webcite
  • [56]Porter DL, Levine BL, Kalos M, Bagg A, June CH: Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011, 365:725-733.
  • [57]Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, Williams AF: Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 1987, 24:1281-1290.
  • [58]Baum PR, Gayle RB 3rd, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, Seldin MF, Baker E, Sutherland GR, Clifford KN, Alderson MR, Goodwin RG, Fanslow WC: Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 1994, 13:3992-4001.
  • [59]Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG: Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 1994, 180:757-762.
  • [60]Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD: Science gone translational: the OX40 agonist story. Immunol Rev 2011, 244:218-231.
  • [61]Pardee AD, McCurry D, Alber S, Hu P, Epstein AL, Storkus WJ: A therapeutic OX40 agonist dynamically alters dendritic, endothelial, and T cell subsets within the established tumor microenvironment. Cancer Res 2010, 70:9041-9052.
  • [62]Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, Kovacsovics-Bankowski M, Moudgil T, Twitty C, Walker EB, Hu HM, Urba WJ, Weinberg AD, Curti BD, Fox BA: Signaling through OX40 enhances antitumor immunity. Semin Oncol 2010, 37:524-532.
  • [63]Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, Sugamura K, Ishii N: Distinct roles for theOX40-40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004, 172:3580-3589.
  • [64]Redmond WL, Triplett T, Floyd K, Weinberg AD: Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PLoS One 2012, 7:e34467.
  • [65]Griseri T, Asquith M, Thompson C, Powrie F: OX40 is required for regulatory T cell-mediated control of colitis. J Exp Med 2010, 207:699-709.
  • [66]Piconese S, Pittoni P, Burocchi A, Gorzanelli A, Carè A, Tripodo C, Colombo MP: A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol 2010, 40:2902-2913.
  • [67]Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN, Offner H, Weinberg AD: Cutting edge : OX40agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 2009, 183:4853-4857.
  • [68]Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP: Triggering of OX40 (CD134) on CD4 + CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005, 105:2845-2851.
  • [69]Croft M: Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 2010, 28:57-78.
  • [70]Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J: Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 2000, 164:2160-2169.
  • [71]Gough MJ, Crittenden MR, Sarff MC, Pang P, Seung SK, Vetto JT, Hu HM, Redmond WL, Holland J, Weinberg AD: Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother 2010, 33:798-809.
  • [72]Pan PY, Zang Y, Weber K, Meseck ML, Chen SH: OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther 2002, 6:528-536.
  • [73]Houot R, Levy R: T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood 2009, 113:3546-3552.
  • [74]Watanabe A, Hara M, Chosa E, Nakamura K, Sekiya R, Shimizu T, Onitsuka T: Combination of adoptive cell transfer and antibody injection can eradicate established tumors in mice–an in vivo study using anti-OX40mAb, anti-CD25mAb and anti-CTLA4mAb. Immunopharmacol Immunotoxicol 2010, 32:238-245.
  • [75]Garrison K, Hahn T, Lee WC, Ling LE, Weinberg AD, Akporiaye ET: The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother 2012, 61:511-521.
  • [76]Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, Weinberg AD, Wolchok JD, Houghton AN: OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 2009, 206:1103-1116.
  • [77]Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, Walker J, Gonzalez I, Meeuwsen T, Fox BA, Moudgil T, Miller W, Haley D, Coffey T, Fisher B, Delanty-Miller L, Rymarchyk N, Kelly T, Crocenzi T, Bernstein E, Sanborn R, Urba WJ, Weinberg AD: OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013, 73:7189-98.
  • [78]Voo KS, Bover L, Harline ML, Vien LT, Facchinetti V, Arima K, Kwak LW, Liu YJ: Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol 2013, 191:3641-3650.
  • [79]Morris NP, Peters C, Montler R, Hu HM, Curti BD, Urba WJ, Weinberg AD: Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain. Mol Immunol 2007, 44:3112-3121.
  • [80]Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Migliorati G, Riccardi C: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci U S A 1997, 94:6216-6221.
  • [81]Nocentini G, Ronchetti S, Petrillo MG, Riccardi C: Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Br J Pharmacol 2012, 165:2089-2099.
  • [82]Schaer DA, Murphy JT, Wolchok JD: Modulation of GITR for cancer immunotherapy. Curr Opin Immunol 2012, 24:217-224.
  • [83]Lacal PM, Petrillo MG, Ruffini F, Muzi A, Bianchini R, Ronchetti S, Migliorati G, Riccardi C, Graziani G, Nocentini G: Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion. J Pharmacol Exp Ther 2013, 347:164-172.
  • [84]Chattopadhyay K, Ramagopal UA, Brenowitz M, Nathenson SG, Almo SC: Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily. Proc Natl Acad Sci U S A 2008, 105:635-640.
  • [85]Zhou Z, Tone Y, Song X, Furuuchi K, Lear JD, Waldmann H, Tone M, Greene MI, Murali R: Structural basis for ligand-mediated mouse GITR activation. Proc Natl Acad Sci USA 2008, 105:641-645.
  • [86]Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002, 3:135-142.
  • [87]Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, Collins M, Shevach EM: Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4 + CD25+ T cells. J Immunol 2004, 173:5008-5020.
  • [88]Cohen AD, Schaer DA, Liu C, Li Y, Hirschhorn-Cymmerman D, Kim SC, Diab A, Rizzuto G, Duan F, Perales MA, Merghoub T, Houghton AN, Wolchok JD: Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 2010, 5:e10436.
  • [89]Turk MJ, Guevara-Patiño JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN: Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004, 200:771-782.
  • [90]Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S: Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25 + CD4+ regulatory T cells. J Exp Med 2005, 202:885-891.
  • [91]Piao J, Kamimura Y, Iwai H, Cao Y, Kikuchi K, Hashiguchi M, Masunaga T, Jiang H, Tamura K, Sakaguchi S, Azuma M: Enhancement of T-cell-mediated anti-tumour immunity via the ectopically expressed glucocorticoid-induced tumour necrosis factor receptor-related receptor ligand (GITRL) on tumours. Immunology 2009, 127:489-499.
  • [92]Schaer DA, Budhu S, Liu C, Bryson CF, Malandro NM, Cohen AD, Zhong H, Yang X, Houghton AN, Merghoub T, Wolchok JD: GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol Res 2013, 1:320-331.
  • [93]Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, Huggins D, Liu C, Turk MJ, Restifo NP, Sakaguchi S, Houghton AN: Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 2006, 66:4904-4912.
  • [94]Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL: Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med 2013, 210:1685-1693.
  • [95]Nishikawa H, Kato T, Hirayama M, Orito Y, Sato E, Harada N, Gnjatic S, Old LJ, Shiku H: Regulatory T cell-resistant CD8+ T cells induced by glucocorticoid-induced tumor necrosisfactor receptor signaling. Cancer Res 2008, 68:5948-5954.
  • [96]Boczkowski D, Lee J, Pruitt S, Nair S: Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther 2009, 16:900-911.
  • [97]Hoffmann C, Stanke J, Kaufmann AM, Loddenkemper C, Schneider A, Cichon G: Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 2010, 33:136-145.
  • [98]Imai N, Ikeda H, Tawara I, Wang L, Wang L, Nishikawa H, Kato T, Shiku H: Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Sci 2009, 100:1317-1325.
  • [99]Mitsui J, Nishikawa H, Muraoka D, Wang L, Noguchi T, Sato E, Kondo S, Allison JP, Sakaguchi S, Old LJ, Kato T, Shiku H: Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res 2010, 16:2781-2791.
  • [100]Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, Dannull J, Nair S: Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 2011, 41:3553-3563.
  • [101]Baessler T, Krusch M, Schmiedel BJ, Kloss M, Baltz KM, Wacker A, Schmetzer HM, Salih HR: Glucocorticoid-induced tumor necrosis factor receptor-related protein ligand subverts immunosurveillance of acute myeloid leukemia in humans. Cancer Res 2009, 69:1037-1045.
  • [102]Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M, Baessler T, Kumbier I, Peterfi A, Kupka S, Kroeber S, Menzel D, Radsak MP, Rammensee HG, Salih HR: Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 2007, 21:2442-2454.
  • [103]Rosenzweig M, Ponte J, Apostolou I, Doty D, Guild G, Slavonic M, Ponath P, Vaickus L: Development of TRX518, an aglycosyl humanized monoclonal antibody (Mab) agonist of huGITR [abstract]. J Clin Oncol 2010, 28:e13028.
  • [104]Kwon BS, Tan KB, Ni J, Oh KO, Lee ZH, Kim KK, Kim YJ, Wang S, Gentz R, Yu GL, Harrop J, Lyn SD, Silverman C, Porter TG, Truneh A, Young PR: A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 1997, 272:14272-14276.
  • [105]Pasero C, Speiser DE, Derré L, Olive D: The HVEM network: new directions in targeting novel costimulatory/co-inhibitory molecules for cancer therapy. Curr Opin Pharmacol 2012, 12:475-485.
  • [106]Morel Y, Truneh A, Sweet RW, Olive D, Costello RT: The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 2001, 167:2479-2486.
  • [107]Cai G, Freeman GJ: The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 2009, 229:244-258. 107
  • [108]Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE: BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2010, 120:157-167.
  • [109]Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V, Zarour HM: CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 2012, 72:887-896.
  • [110]Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben- Neriah S, Schein J, Morin RD, Moore R, Shah SP, Qian H, Paul JE, Telenius A, Relander T, Lam W, Savage K, Connors JM, Brown C, Marra MA, Gascoyne RD, Horsman DE: Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res 2010, 70:9166-9174.
  • [111]Park JJ, Anand S, Zhao Y, Matsumura Y, Sakoda Y, Kuramasu A, Strome SE, Chen L, Tamada K: Expression of anti-HVEM single-chain antibody on tumor cells induces tumor-specific immunity with long-term memory. Cancer Immunol Immunother 2012, 61:203-214.
  • [112]van Lier RA, Borst J, Vroom TM, Klein H, Van Mourik P, Zeijlemaker WP, Melief CJ: Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J Immunol 1987, 139:1589-1596.
  • [113]Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J: CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 2000, 1:433-440.
  • [114]Denoeud J, Moser M: Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 2011, 89:195-203.
  • [115]Croft M: The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 2009, 9:271-285.
  • [116]Ruprecht CR, Gattorno M, Ferlito F, Gregorio A, Martini A, Lanzavecchia A, Sallusto F: Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J Exp Med 2005, 201:1793-1803.
  • [117]Coenen JJ, Koenen HJ, van Rijssen E, Hilbrands LB, Joosten I: Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4 + CD25+ regulatory T cells. Blood 2006, 107:1018-1023.
  • [118]Jung J, Choe J, Li L, Choi YS: Regulation of CD27 expression in the course of germinal center B cell differentiation: the pivotal role of IL-10. Eur J Immunol 2000, 30:2437-2443.
  • [119]Oshima H, Nakano H, Nohara C, Kobata T, Nakajima A, Jenkins NA, Gilbert DJ, Copeland NG, Muto T, Yagita H, Okumura K: Characterization of murine CD70 by molecular cloning and mAb. Int Immunol 1998, 10:517-526.
  • [120]Peperzak V, Xiao Y, Veraar EA, Borst J: CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. J Clin Invest 2010, 120:168-178.
  • [121]Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ: CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 2012, 119:696-706.
  • [122]Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ: Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 2002, 3:83-90.
  • [123]Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF: CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012, 72:3664-3676.
  • [124]Schürch C, Riether C, Matter MS, Tzankov A, Ochsenbein AF: CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression. J Clin Invest 2012, 122:624-638.
  • [125]Celldex Therapeutics initiates CDX-1127 phase 1 study in malignant solid tumors [press release] http://www.news-medical.net/news/20111108/Celldex-Therapeutics-initiates-CDX-1127-Phase-1-study-in-malignant-solid-tumors.aspx webcite
  • [126]He L-Z, Thomas L, Weidlick J, Vitale L, O’Neill T, Prostak N, Sundarapandiyan K, Marsh H, Yellin M, Davis TA, Keler T: Development of a human anti-CD27 antibody with efficacy in lymphoma and leukemia models by two distinct mechanisms [Abstract]. Blood 2011, 118:abstr 2861.
  • [127]Vanneman M, Dranoff G: Combining immunotherapy and targeted therapies in cancer treatment. Nature Rev Cancer 2012, 12:237-251.
  • [128]Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N: Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006, 355:1018-1028.
  文献评价指标  
  下载次数:1次 浏览次数:9次