期刊论文详细信息
Investigative Genetics
Pet fur or fake fur? A forensic approach
David Caramelli2  Giampietro Lago4  Andrea Berti1  Giancarlo D’Errico1  Filippo Barni1  Antonino Virgili3  Stefania Vai2  Rosario Casamassima5  Elena Pilli2 
[1] Reparto Carabinieri Investigazioni Scientifiche di Roma, Sezione di Biologia, viale Tor di Quinto 119, Rome, Italy;Dipartimento di Biologia, Università di Firenze, via del Proconsolo 12, 50122 Florence, Italy;Istituto Superiore di Tecniche Investigative dei Carabinieri, viale Salvo D’Acquisto 2, 00049 Velletri (Roma), Italy;Reparto Carabinieri Investigazioni Scientifiche di Parma, Parco Ducale 3, Parma, Italy;Reparto Carabinieri Investigazioni Scientifiche di Roma, Sezione di Chimica, viale Tor di Quinto 119, Rome, Italy
关键词: Species identification;    mtDNA;    Microscopic analysis;    High degraded samples;    Fur samples;   
Others  :  800957
DOI  :  10.1186/2041-2223-5-7
 received in 2014-01-30, accepted in 2014-04-29,  发布年份 2014
PDF
【 摘 要 】

Background

In forensic science there are many types of crime that involve animals. Therefore, the identification of the species has become an essential investigative tool. The exhibits obtained from such offences are very often a challenge for forensic experts. Indeed, most biological materials are traces, hair or tanned fur. With hair samples, a common forensic approach should proceed from morphological and structural microscopic examination to DNA analysis. However, the microscopy of hair requires a lot of experience and a suitable comparative database to be able to recognize with a high degree of accuracy that a sample comes from a particular species and then to determine whether it is a protected one. DNA analysis offers the best opportunity to answer the question, ‘What species is this?’ In our work, we analyzed different samples of fur coming from China used to make hats and collars. Initially, the samples were examined under a microscope, then the mitochondrial DNA was tested for species identification. For this purpose, the genetic markers used were the 12S and 16S ribosomal RNA, while the hypervariable segment I of the control region was analyzed afterwards, to determine whether samples belonged to the same individual.

Results

Microscopic examination showed that the fibres were of animal origin, although it was difficult to determine with a high degree of confidence which species they belonged to and if they came from a protected species. Therefore, DNA analysis was essential to try to clarify the species of these fur samples.

Conclusions

Macroscopic and microscopic analysis confirmed the hypothesis regarding the analyzed hair belonging to real animals, although it failed to prove with any kind of certainty which actual family it came from, therefore, the species remains unknown. Sequence data analysis and comparisons with the samples available in GenBank showed that the hair, in most cases, belonged to the Canidae family, and in one case only to Felidae.

【 授权许可】

   
2014 Pilli et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708001653459.pdf 2118KB PDF download
Figure 15. 61KB Image download
Figure 14. 39KB Image download
Figure 13. 82KB Image download
Figure 12. 21KB Image download
Figure 11. 28KB Image download
Figure 10. 47KB Image download
Figure 9. 58KB Image download
Figure 8. 48KB Image download
Figure 7. 56KB Image download
Figure 6. 49KB Image download
Figure 5. 54KB Image download
Figure 4. 74KB Image download
Figure 3. 56KB Image download
Figure 2. 68KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

【 参考文献 】
  • [1]Butler JM: Non-human DNA. In Advanced Topics in Forensic DNA Typing Methodology. Edited by Butler JM. London: Academic; 2011:473-487.
  • [2]Barbanera F, Guerrini M, Beccani C, Forcina G, Anayiotos P, Panayides P: Conservation of endemic and threatened wildlife: molecular forensic DNA against poaching of the Cypriot mouflon (Ovis orientalis ophion, Bovidae). Forensic Sci Int Genet 2012, 6:671-675.
  • [3]Berger C, Berger B, Parson W: Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations. Methods Mol Biol 2012, 830:331-348.
  • [4]Allgeier L, Hemenway J, Shirley N, LaNier T, Coyle HM: Field testing of collection cards for Cannabis sativa samples with a single hexanucleotide DNA marker. J Forensic Sci 2011, 56:1245-1249.
  • [5]Butler JM, Schneider PM, Carracedo A: Journal update. Forensic Sci Int Genet 2010, 4:143-144.
  • [6]Yi-Ming L, Zenxiang G, Xinhai L, Sung W, Niemelä J: Illegal wildlife trade in the Himalayan region of China. Biodivers Conserv 2000, 9:901-918.
  • [7]Wilson-Wilde L: Combating wildlife crime. Forensic Sci Med Pathol 2010, 6:149-150.
  • [8]Wilson-Wilde L: Wildlife crime: a global problem. Forensic Sci Med Pathol 2010, 6:221-222.
  • [9]Alacs EA, Georges A, FitzSimmons NN, Robertson J: DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Pathol 2010, 6:180-194.
  • [10]World Wildlife Fund: Tiger. [https://worldwildlife.org/species/tiger webcite]
  • [11]World Wildlife Fund: Elephant. [https://worldwildlife.org/species/elephant webcite]
  • [12]Wozney KM, Wilson PJ: Real-time PCR detection and quantification of elephantid DNA: species identification for highly processed samples associated with the ivory trade. Forensic Sci Int 2012, 219:106-112.
  • [13]Peppin L, McEwing R, Carvalho GR, Ogden R: A DNA-based approach for the forensic identification of Asiatic black bear (Ursus thibetanus) in a traditional Asian medicine. J Forensic Sci 2008, 53:1358-1362.
  • [14]Dubey B, Meganathan PR, Haque I: DNA mini-barcoding: an approach for forensic identification of some endangered Indian snake species. Forensic Sci Med Pathol 2011, 5:181-184.
  • [15]Meganathan PR, Dubey B, Jogayya KN, Haque I: Validation of a multiplex PCR assay for the forensic identification of Indian crocodiles. J Forensic Sci 2011, 56:1241-1244.
  • [16]Reid BN, LE M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E: Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Resour 2011, 11:956-967.
  • [17]Rosen GE, Smith KF: Summarizing the evidence on the international trade in illegal wildlife. Ecohealth 2010, 7:24-32.
  • [18]Nijman V: An overview of international wildlife trade from Southeast Asia. Biodivers Conserv 2009, 19:1101-1114.
  • [19]Alacs E, Georges A: Wildlife across our borders: a review of the illegal trade in Australia. Aust J Forensic Sci 2008, 40:147-160.
  • [20]Coghlan ML, White NE, Parkinson L, Haile J, Spencer PBS, Bunce M: Egg forensics: an appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs. Forensic Sci Int Genet 2012, 6:268-273.
  • [21]Lee JC-I, Hsieh H-M, Huang L-H, Kuo Y-C, Wu J-H, Chin S-C, Lee A-H, Linacre A, Tsai L-C: Ivory identification by DNA profiling of cytochrome b gene. Int J Legal Med 2009, 123:117-121.
  • [22]Comstock KE, Ostrander EA, Wasser SK: Amplifying nuclear and mitochondrial DNA from African elephant ivory: a tool for monitoring the ivory trade. Conserv Biol 2003, 17:1840-1843.
  • [23]Gupta S, Thangaraj K, Singh L: A simple and inexpensive molecular method for sexing and identification of the forensic samples of elephant origin. J Forensic Sci 2006, 51:805-807.
  • [24]Wasser SK, Clark B, Laurie C: The ivory trail. Sci Am 2009, 301:68-74. 76
  • [25]Wasser SK, Joseph Clark W, Drori O, Stephen Kisamo E, Mailand C, Mutayoba B, Stephens M: Combating the illegal trade in African elephant ivory with DNA forensics. Conserv Biol 2008, 22:1065-1071.
  • [26]Biscardi B, Welsh W, Kennedy A: Discrimination of the hard keratins animal horn and chelonian shell using attenuated total reflection-infrared spectroscopy. Appl Spectrosc 2012, 66:606-608.
  • [27]Parlamento Italiano: Disposizioni concernenti il divieto di maltrattamento degli animali, nonché di impiego degli stessi in combattimenti clandestini o competizioni non autorizzate. [http://www.camera.it/parlam/leggi/04189l.htm webcite]
  • [28]Bisbing RE: Hair comparison: microscopic. In Encyclopedia of Forensic Science, Volume 3. Edited by Siegel J, Knupfer G, Saukko P. London: Academic; 2000:1002-1016.
  • [29]Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT: Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 2006, 37:545-579.
  • [30]Clayton DA: Replication of animal mitochondrial DNA. Cell 1982, 28:693-705.
  • [31]Hayashi J, Tagashira Y, Yoshida MC: Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp Cell Res 1985, 160:387-395.
  • [32]Robin ED, Wong R: Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 1988, 136:507-513.
  • [33]Pfeiffer H, Benthaus S, Rolf B, Brinkmann B: The Kaiser’s tooth. Int J Legal Med 2003, 117:118-120.
  • [34]Ginther C, Issel-Tarver L, King MC: Identifying individuals by sequencing mitochondrial DNA from teeth. Nat Genet 1992, 2:135-138.
  • [35]Loreille OM, Diegoli TM, Irwin JA, Coble MD, Parsons TJ: High efficiency DNA extraction from bone by total demineralization. Forensic Sci Int Genet 2007, 1:191-195.
  • [36]Anslinger K, Weichhold G, Keil W, Bayer B, Eisenmenger W: Identification of the skeletal remains of Martin Bormann by mtDNA analysis. Int J Legal Med 2001, 114:194-196.
  • [37]Budowle B, van Daal A: Forensically relevant SNP classes. Biotechniques 2008, 44:603-608. 610
  • [38]Parson W: Relevance of mtDNA analysis for forensic applications. Rechtmedizin 2009, 19:183-192.
  • [39]Allen M, Engström AS, Meyers S, Handt O, Saldeen T, von Haeseler A, Pääbo S, Gyllensten U: Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci 1998, 43:453-464.
  • [40]Brown WM, George M, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 1979, 76:1967-1971.
  • [41]Kuwayama R, Ozawa T: Phylogenetic relationships among European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 2000, 15:115-123.
  • [42]Irwin DM, Kocher TD, Wilson AC: Evolution of the cytochrome b gene of mammals. J Mol Evol 1991, 32:128-144.
  • [43]Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC: Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 1989, 86:6196-6200.
  • [44]Tobe SS, Linacre A: A method to identify a large number of mammalian species in the UK from trace samples and mixtures without the use of sequencing. Forensic Sci Int Genet Suppl Ser 2008, 1:625-627.
  • [45]An J, Lee M-Y, Min M-S, Lee M-H, Lee H: A molecular genetic approach for species identification of mammals and sex determination of birds in a forensic case of poaching from South Korea. Forensic Sci Int 2007, 167:59-61.
  • [46]Tobe S, Linacre A: Species identification of human and deer from mixed biological material. Forensic Sci Int 2007, 169:278-279.
  • [47]De Pancorbo MM, Castro A, Fernandez-Fernandez I, Gonzalez-Fernandez M, Martnez-Bouzas C, Cuevas N: Cytochrome b and HVI sequences of mitochondrial DNA to identify domestic animal hair in forensic casework. Int Congr Ser 2003, 1239:841-845.
  • [48]Wan Q-H, Fang S-G: Application of species-specific polymerase chain reaction in the forensic identification of tiger species. Forensic Sci Int 2003, 131:75-78.
  • [49]Wetton JH, Tsang CSF, Roney CA, Spriggs AC: An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int 2004, 140:139-145.
  • [50]Tobe SS, Linacre A: Identifying endangered species from degraded mixtures at low levels. Forensic Sci Int Genet Suppl Ser 2009, 2:304-305.
  • [51]Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM: Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conserv Genet 2003, 4:95-103.
  • [52]Hsieh H-M, Huang L-H, Tsai L-C, Liu C-L, Kuo Y-C, Hsiao C-T, Linacre A, Lee JC-I: Species identification of Kachuga tecta using the cytochrome b gene. J Forensic Sci 2006, 51:52-56.
  • [53]Rohilla MS, Tiwari PK: Restriction fragment length polymorphism of mitochondrial DNA and phylogenetic relationships among five species of Indian freshwater turtles. J Appl Genet 2008, 49:167-182.
  • [54]Meganathan PR, Dubey B, Haque I: Molecular identification of crocodile species using novel primers for forensic analysis. Conserv Genet 2008, 10:767-770.
  • [55]Hsieh H-M, Huang L-H, Tsai L-C, Kuo Y-C, Meng H-H, Linacre A, Lee JC-I: Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 2003, 136:1-11.
  • [56]Gupta SK, Verma SK, Singh L: Molecular insight into a wildlife crime: the case of a peafowl slaughter. Forensic Sci Int 2005, 154:214-217.
  • [57]Barcode of Life Data Systems [http:www.boldsystems.org webcite]
  • [58]Hebert PDN, Cywinska A, Ball SL, de Waard JR: Biological identifications through DNA barcodes. Proc Biol Sci 2003, 270:313-321.
  • [59]Borisenko AV, Lim BK, Ivanova NV, Hanner RH, Hebert PDN: DNA barcoding in surveys of small mammal communities: a field study in Suriname. Mol Ecol Resour 2008, 8:471-479.
  • [60]Hebert PDN, Ratnasingham S, De Waard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003, 270(Suppl 1):S96-S99.
  • [61]Meier R, Shiyang K, Vaidya G, Ng PKL: DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 2006, 55:715-728.
  • [62]Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN: DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 2006, 103:968-971.
  • [63]Santos Rojo Velasco GS: Testing molecular barcodes: invariant mitochondrial DNA sequences vs the larval and adult morphology of West Palaearctic Pandasyopthalmus species (Diptera: Syrphidae: Paragini). Eur J Entomol 2006, 103:443-458.
  • [64]Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN: DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci U S A 2006, 103:3657-3662.
  • [65]Cywinska A, Hunter FF, Hebert PDN: Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 2006, 20:413-424.
  • [66]Nelson LA, Wallman JF, Dowton M: Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 2007, 21:44-52.
  • [67]Mitchell A: DNA barcoding demystified. Aust J Entomol 2008, 47:169-173.
  • [68]Smith MA, Poyarkov NA, Hebert PDN: DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour 2008, 8:235-246.
  • [69]Holmes BH, Steinke D, Ward RD: Identification of shark and ray fins using DNA barcoding. Fish Res 2009, 95:280-288.
  • [70]Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM: Identification of birds through DNA barcodes. PLoS Biol 2004, 2:e312.
  • [71]Yoo HS, Eah J-Y, Kim JS, Kim Y-J, Min M-S, Paek WK, Lee H, Kim C-B: DNA barcoding Korean birds. Mol Cells 2006, 22:323-327.
  • [72]Tavares ES, Baker AJ: Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol Biol 2008, 8:81.
  • [73]Lohman DJ, Prawiradilaga DM, Meier R: Improved COI barcoding primers for Southeast Asian perching birds (Aves: Passeriformes). Mol Ecol Resour 2009, 9:37-40.
  • [74]Wong EH-K, Shivji MS, Hanner RH: Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Mol Ecol Resour 2009, 9(Suppl s1):243-256.
  • [75]Huang J, Xu Q, Sun ZJ, Tang GL, Su ZY: Identifying earthworms through DNA barcodes. Pedobiologia (Jena) 2007, 51:301-309.
  • [76]Dalton DL, Kotze A: DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Sci Int 2011, 207:e51-e54.
  • [77]Guo H, Wang W, Yang N, Guo B, Zhang S, Yang R, Yuan Y, Yu J, Hu S, Sun Q, Yu J: DNA barcoding provides distinction between Radix Astragali and its adulterants. Sci China Life Sci 2010, 53:992-999.
  • [78]Tyagi A, Bag SK, Shukla V, Roy S, Tuli R: Oligonucleotide frequencies of barcoding loci can discriminate species across kingdoms. PLoS One 2010, 5:e12330.
  • [79]Botti S, Giuffra E: Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products. BMC Biotechnol 2010, 10:60.
  • [80]Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M: Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 2010, 124:595-603.
  • [81]Boehme P, Amendt J, Disney RHL, Zehner R: Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int J Legal Med 2010, 124:577-581.
  • [82]Ferri G, Alù M, Corradini B, Beduschi G: Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 2009, 123:395-401.
  • [83]Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B: Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Legal Med 2005, 119:291-294.
  • [84]Melton T, Holland C: Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification. J Forensic Sci 2007, 52:1305-1307.
  • [85]Kitano T, Umetsu K, Tian W, Osawa M: Two universal primer sets for species identification among vertebrates. Int J Legal Med 2007, 121:423-427.
  • [86]Mitani T, Akane A, Tokiyasu T, Yoshimura S, Okii Y, Yoshida M: Identification of animal species using the partial sequences in the mitochondrial 16S rRNA gene. Leg Med (Tokyo) 2009, 11(Suppl 1):S449-S450.
  • [87]Imaizumi K, Akutsu T, Miyasaka S, Yoshino M: Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med 2007, 121:184-191.
  • [88]Rastogi G, Dharne MS, Walujkar S, Kumar A, Patole MS, Shouche YS: Species identification and authentication of tissues of animal origin using mitochondrial and nuclear markers. Meat Sci 2007, 76:666-674.
  • [89]Schwenke PL, Rhydderch JG, Ford MJ, Marshall AR, Park LK: Forensic identification of endangered Chinook salmon (Oncorhynchus tshawytscha) using a multilocus SNP assay. Conserv Genet 2006, 7:983-989.
  • [90]Junqueira ACM, Lessinger AC, Torres TT, da Silva FR, Vettore AL, Arruda P, Azeredo Espin AML: The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene 2004, 339:7-15.
  • [91]Mayer F, Dietz C, Kiefer A: Molecular species identification boosts bat diversity. Front Zool 2007, 4:4.
  • [92]Clifford SL, Anthony NM, Bawe-Johnson M, Abernethy KA, Tutin CEG, White LJT, Bermejo M, Goldsmith ML, McFarland K, Jeffery KJ, Bruford MW, Wickings EJ: Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla). Mol Ecol 2004, 13:1551-1565,1567.
  • [93]Zhang W, Zhang Z, Shen F, Hou R, Lv X, Yue B: Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris). J Genet 2006, 85:107-116.
  • [94]Himmelberger AL, Spear TF, Satkoski JA, George DA, Garnica WT, Malladi VS, Smith DG, Webb KM, Allard MW, Kanthaswamy S: Forensic utility of the mitochondrial hypervariable region 1 of domestic dogs, in conjunction with breed and geographic information. J Forensic Sci 2008, 53:81-89.
  • [95]Eichmann C, Parson W: Molecular characterization of the canine mitochondrial DNA control region for forensic applications. Int J Legal Med 2007, 121:411-416.
  • [96]Schneider PM, Seo Y, Rittner C: Forensic mtDNA hair analysis excludes a dog from having caused a traffic accident. Int J Legal Med 1999, 112:315-316.
  • [97]Pun K-M, Albrecht C, Castella V, Fumagalli L: Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis 2009, 30:1008-1014.
  • [98]Nussbaumer C, Korschineck I: Non-human mtDNA helps to exculpate a suspect in a homicide case. Int Congr Ser 2006, 1288:136-138.
  • [99]Fumagalli L, Cabrita CJ, Castella V: Simultaneous identification of multiple mammalian species from mixed forensic samples based on mtDNA control region length polymorphism. Forensic Sci Int Genet Suppl Ser 2009, 2:302-303.
  • [100]Gilbert MTP, Wilson AS, Bunce M, Hansen AJ, Willerslev E, Shapiro B, Higham TFG, Richards MP, O’Connell TC, Tobin DJ, Janaway RC, Cooper A: Ancient mitochondrial DNA from hair. Curr Biol 2004, 14:R463-R464.
  • [101]Bengtsson CF, Olsen ME, Brandt LØ, Bertelsen MF, Willerslev E, Tobin DJ, Wilson AS, Gilbert MTP: DNA from keratinous tissue: part I: hair and nail. Ann Anat 2012, 194:17-25.
  • [102]Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert MTP, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A, Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X, Zhang H, Li Z, Chen M, Orlando L, et al.: Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 2010, 463:757-762.
  • [103]Melton T, Dimick G, Higgins B, Yon M, Holland C: Mitochondrial DNA analysis of 114 hairs measuring less than 1 cm from a 19-year-old homicide. Investig Genet 2012, 3:12.
  • [104]Gilbert MTP, Janaway RC, Tobin DJ, Cooper A, Wilson AS: Histological correlates of post mortem mitochondrial DNA damage in degraded hair. Forensic Sci Int 2006, 156:201-207.
  • [105]Gilbert MTP, Menez L, Janaway RC, Tobin DJ, Cooper A, Wilson AS: Resistance of degraded hair shafts to contaminant DNA. Forensic Sci Int 2006, 156:208-212.
  • [106]Ogle RR, Mitosinka GT: A rapid technique for preparing hair cuticular scale casts. J Forensic Sci 1973, 18:82-83.
  • [107]Cooper A, Poinar HN: Ancient DNA: do it right or not at all. Science 2000, 289:1139.
  • [108]Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M: Genetic analyses from ancient DNA. Annu Rev Genet 2004, 38:645-679.
  • [109]Willerslev E, Cooper A: Ancient DNA. Proc Biol Sci 2005, 272:3-16.
  • [110]Friedber EC, Walker GC, Siede W, Wood RD, Schulttz RA, Ellenberger T: DNA Repair and Mutagenesis. 2nd edition. Washington DC: ASM Press; 2005.
  • [111]Hansen A, Willerslev E, Wiuf C, Mourier T, Arctander P: Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 2001, 18:262-265.
  • [112]Gilbert MTP, Hansen AJ, Willerslev E, Rudbeck L, Barnes I, Lynnerup N, Cooper A: Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet 2003, 72:48-61.
  • [113]Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S: DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 2001, 29:4793-4799.
  • [114]Bower MA, Spencer M, Matsumura S, Nisbet RER, Howe CJ: How many clones need to be sequenced from a single forensic or ancient DNA sample in order to determine a reliable consensus sequence? Nucleic Acids Res 2005, 33:2549-2556.
  • [115]Timmis JN, Ayliffe MA, Huang CY, Martin W: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004, 5:123-135.
  • [116]Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L: Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol 2004, 13:321-335.
  • [117]den Tex R-J, Maldonado JE, Thorington R, Leonard JA: Nuclear copies of mitochondrial genes: another problem for ancient DNA. Genetica 2010, 138:979-984.
  • [118]Van der Kuyl AC, Kuiken CL, Dekker JT, Perizonius WR, Goudsmit J: Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies. J Mol Evol 1995, 40:652-657.
  • [119]Greenwood AD, Pääbo S: Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Mol Ecol 1999, 8:133-137.
  • [120]Greenwood AD, Capelli C, Possnert G, Pääbo S: Nuclear DNA sequences from late Pleistocene megafauna. Mol Biol Evol 1999, 16:1466-1473.
  • [121]Oliveira R, Castro D, Godinho R, Luikart G, Alves PC: Species identification using a small nuclear gene fragment: application to sympatric wild carnivores from South-western Europe. Conserv Genet 2009, 11:1023-1032.
  • [122]Song H, Buhay JE, Whiting MF, Crandall KA: Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 2008, 105:13486-13491.
  • [123]Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A: Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 2002, 295:2267-2270.
  • [124]Verginelli F, Capelli C, Coia V, Musiani M, Falchetti M, Ottini L, Palmirotta R, Tagliacozzo A, De Grossi Mazzorin I, Mariani-Costantini R: Mitochondrial DNA from prehistoric canids highlights relationships between dogs and south-east European wolves. Mol Biol Evol 2005, 22:2541-2551.
  • [125]Gundry RL, Allard MW, Moretti TR, Honeycutt RL, Wilson MR, Monson KL, Foran DR: Mitochondrial DNA analysis of the domestic dog: control region variation within and among breeds. J Forensic Sci 2007, 52:562-572.
  • [126]Primer3 [http://frodo.wi.mit.edu/primer3/input.htm webcite]
  • [127]Kim KS, Lee SE, Jeong HW, Ha JH: The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evol 1998, 10:210-220.
  • [128]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [129]Basic Local Alignment Search Tool [blast.ncbi.nlm.nih.gov]
  • [130]Coghlan ML, White NE, Murray DC, Houston J, Rutherford W, Bellgard MI, Haile J, Bunce M: Metabarcoding avian diets at airports: implications for birdstrike hazard management planning. Investig Genet 2013, 4:27.
  • [131]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [132]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [133]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [134]Wheeler B, Wilson LJ: Animal hair examinations. In Practical Forensic Microscopy: A Laboratory Manual. Chichester: Wiley; 2008:160-169.
  • [135]Deedrick DW, Koch SL: Microscopy of hair Part II: a practical guide and manual for animal hairs. Forensic Sci Commun 2004., 6[http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july2004/research/2004_03_research02.htm webcite]
  • [136]Arbidar Fiber and Hair Collections [http://www.microtracellc.com/service/arbidar-reference-collections webcite]
  • [137]Lindahl T: Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
  • [138]Pääbo S: Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 1989, 86:1939-1943.
  • [139]Höss M, Jaruga P, Zastawny TH, Dizdaroglu M, Pääbo S: DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 1996, 24:1304-1307.
  • [140]Mitchell D, Willerslev E, Hansen A: Damage and repair of ancient DNA. Mutat Res 2005, 571:265-276.
  • [141]Chen L, Zhang HH: Nyctereutes procyonoides Mitochondrion, Complete Genome. GenBank: GU256221.1. [http://www.ncbi.nlm.nih.gov/nuccore/GU256221.1 webcite]
  • [142]Bär W, Kratzer A, Mächler M, Schmid W: Postmortem stability of DNA. Forensic Sci Int 1988, 39:59-70.
  • [143]Lindahl T, Nyberg B: Rate of depurination of native deoxyribonucleic acid. Biochemistry 1972, 11:3610-3618.
  • [144]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [145]Tamura K: Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 1992, 9:678-687.
  • [146]Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK: Multiple and ancient origins of the domestic dog. Science 1997, 276:1687-1689.
  • [147]Webb KM, Allard MW: Identification of forensically informative SNPs in the domestic dog mitochondrial control region. J Forensic Sci 2009, 54:289-304.
  • [148]Angleby H, Savolainen P: Forensic informativity of domestic dog mtDNA control region sequences. Forensic Sci Int 2005, 154:99-110.
  • [149]Shahid SA, Xiao Y, Khan S, Feng D, Johnson GS, Ha J: Canis lupus familiaris Isolate 1 Breed Welsh Springer Spaniel Mitochondrion, Complete Genome. GenBank: AY656747.1. [http://www.ncbi.nlm.nih.gov/nuccore/AY656747 webcite]
  • [150]Pang J-F, Kluetsch C, Zou X-J, Zhang A, Luo L-Y, Angleby H, Ardalan A, Ekström C, Sköllermo A, Lundeberg J, Matsumura S, Leitner T, Zhang Y-P, Savolainen P: mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol 2009, 26:2849-2864.
  • [151]Savolainen P, Zhang Y, Luo J, Lundeberg J, Leitner T: Genetic evidence for an East Asian origin of domestic dogs. Science 2002, 298:1610-1613.
  • [152]Imes DL, Wictum EJ, Allard MW, Sacks BN: Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes. Forensic Sci Int Genet 2012, 6:630-639.
  • [153]Kim K, Jeong H, Sohn H, Ha J: Canis familiaris Breed Jindo Mitochondrial D-Loop, Partial Sequence. Genbank: AF064569.1. [http://www.ncbi.nlm.nih.gov/nuccore/AF064569 webcite]
  • [154]Kasuga M, Sugiyama S, Tsuchida S, Omi T: Canis lupus familiaris DNA, Hypervariable Region 1 (Control Region), Partial Sequence, Haplotype: NVLU057 Genbank: AB700664.1. [http://www.ncbi.nlm.nih.gov/nuccore/AB700664 webcite]
  • [155]Zhang J, Zhao C, Liu GS, Chen L, Zhang HH: Canis lupus laniger Mitochondrion, Complete Genome. Genbank: KF573616.1. [http://www.ncbi.nlm.nih.gov/nuccore/KF573616 webcite]
  • [156]Meng C, Zhang H, Meng Q: Canis lupus laniger Mitochondrion, Complete Genome. GenBank: FJ032363.2. [http://www.ncbi.nlm.nih.gov/nuccore/FJ032363 webcite]
  • [157]Tsuda K, Kikkawa Y, Yonekawa H, Tanabe Y: Extensive interbreeding occurred among multiple matriarchal ancestors during the domestication of dogs: evidence from inter- and intraspecies polymorphisms in the D-loop region of mitochondrial DNA between dogs and wolves. Genes Genet Syst 1997, 72:229-238.
  • [158]Ishiguro N, Inoshima Y, Shigehara N: Mitochondrial DNA analysis of the Japanese wolf (Canis lupus hodophilax Temminck, 1839) and comparison with representative wolf and domestic dog haplotypes. Zoolog Sci 2009, 26:765-770.
  • [159]Sharma DK, Maldonado JE, Jhala YV, Fleischer RC: Ancient wolf lineages in India. Proc Biol Sci 2004, 271(Suppl 3):S1-S4.
  • [160]Meng C, Zhang H: Canis lupus chanco Mitochondrion, Complete Genome. GenBank: EU442884.2. [http://www.ncbi.nlm.nih.gov/nuccore/EU442884 webcite]
  • [161]Dou H: Canis lupus chanco Haplotype 1 D-Loop, Partial Sequence; Mitochondrial. GenBank: JX415343.1. [http://www.ncbi.nlm.nih.gov/nuccore/JX415343 webcite]
  • [162]Nonaka N, Sano T, Inoue T, Fukui D, Katakura K, Oku Y: Nyctereutes procyonoides Mitochondrial DNA, D-Loop Region, Partial Sequence, isolate:R1. GenBank: AB292740.1. [http://www.ncbi.nlm.nih.gov/nuccore/AB292740 webcite]
  • [163]Okumura N, Ishiguro N, Nakano M, Matsui A, Sahara M: Intra- and interbreed genetic variations of mitochondrial DNA major non-coding regions in Japanese native dog breeds (Canis familiaris). Anim Genet 1996, 27:397-405.
  • [164]Park SK, Lee M-Y, Min MS, Lee H: Nyctereutes procyonoides Haplotype L_179 D-Loop, Partial Sequence; Mitochondrial. GenBank: EU642411.1. [http://www.ncbi.nlm.nih.gov/nuccore/EU642411 webcite]
  • [165]Pitra C, Schwarz S, Fickel J: Going west - invasion genetics of the alien raccoon dog Nyctereutes procynoides in Europe. Eur J Wildl Res 2009, 56:117-129.
  • [166]Korablev NP, Korablev MP, Rozhnov VV, Korablev PN: Polymorphism of the mitochondrial DNA control region in the population of raccoon dog (Nyctereutes procyonoides Gray, 1834) introduced into the Upper Volga basin. Russ J Genet 2011, 47:1227-1233.
  • [167]Paulauskas A, Griciuviene L, Radzijevskaja J, Gedminas V: Nyctereutes procyonoides Isolate LV1 D-Loop, Partial Sequence; Mitochondrial. GenBank: KC509604.1. [http://www.ncbi.nlm.nih.gov/nuccore/KC509604 webcite]
  • [168]Chen L, Zhang HH: Nyctereutes procyonoides Mitochondrion, Complete Genome. NCBI Reference Sequence: NC_013700.1. [http://www.ncbi.nlm.nih.gov/nuccore/NC_013700 webcite]
  • [169]Wodecka B, Rymaszewska A, Skotarczak B: Host and pathogen DNA identification in blood meals of nymphal Ixodes ricinus ticks from forest parks and rural forests of Poland. Exp Appl Acarol 2014, 62:543-555.
  • [170]Driscoll CA, Macdonald DW, O’Brien SJ: From wild animals to domestic pets, an evolutionary view of domestication. Proc Natl Acad Sci U S A 2009, 106(Suppl 1):9971-9978.
  • [171]Driscoll CA, Menotti-Raymond M, Roca AL, Hupe K, Johnson WE, Geffen E, Harley EH, Delibes M, Pontier D, Kitchener AC, Yamaguchi N, O’Brien SJ, Macdonald DW: The Near Eastern origin of cat domestication. Science 2007, 317:519-523.
  文献评价指标  
  下载次数:212次 浏览次数:20次