期刊论文详细信息
Diabetology & Metabolic Syndrome
Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice
Sampo Lahtinen2  Thierry Sulpice1  Rémy Burcelin3  François Briand1  Céline Garret3  Aurélie Waget3  Lotta K. Stenman2 
[1] Physiogenex SAS, Prologue Biotech, 516 Rue Pierre et Marie Curie, Labège Innopole, France;DuPont Nutrition and Health, Active Nutrition, Sokeritehtaantie 20, Kantvik, 02460, Finland;Institut des Maladies Métaboliques et Cardiovasculaires de Rangueil, Rangueil Hospital, INSERM1048, Toulouse, 31432, France
关键词: Sitagliptin;    Prebiotics;    Probiotics;    Metformin;    Mice;    Obesity;    Gastroenterology;    Diabetes;    Bifidobacteria;   
Others  :  1225018
DOI  :  10.1186/s13098-015-0075-7
 received in 2015-03-25, accepted in 2015-09-08,  发布年份 2015
PDF
【 摘 要 】

Background

Gut microbiota is now known to control glucose metabolism. Previous studies have shown that probiotics and prebiotics may improve glucose metabolism, but their effects have not been studied in combination with drug therapy. The aim of this study was to investigate whether probiotics and prebiotics combined with drug therapy affect diabetic outcomes.

Methods

Two different study designs were used to test gut microbiota modulating treatments with metformin (MET) or sitagliptin (SITA) in male C57Bl/6J mice. In Design 1, diabetes was induced with four-week feeding with a ketogenic, 72 kcal% fat diet with virtually no carbohydrates. Mice were then randomly divided into four groups (n = 10 in each group): (1) vehicle, (2) Bifidobacterium animalis ssp. lactis 420 (B420) (10 9CFU/day), (3) MET (2 mg/mL in drinking water), or (4) MET + B420 (same doses as in the MET and B420 groups). After another 4 weeks, glucose metabolism was assessed with a glucose tolerance test. Fasting glucose, fasting insulin and HOMA-IR were also assessed. In Design 2, mice were fed the same 72 kcal% fat diet to induce diabetes, but they were simultaneously treated within their respective groups (n = 8 in each group): (1) non-diabetic healthy control, (2) vehicle, (3) SITA [3 mg/(kg*day)] (4) SITA with prebiotic polydextrose (PDX) (0.25 g/day), (5) SITA with B420 (10 9CFU/day), and (6) SITA + PDX + B420. Glucose metabolism was assessed at 4 weeks, and weight development was monitored for 6 weeks.

Results

In Design 1, with low-dose metformin, mice treated with B420 had a significantly lower glycemic response (area under the curve) (factorial experiment, P = 0.002) and plasma glucose concentration (P = 0.02) compared to mice not treated with B420. In Design 2, SITA + PDX reduced glycaemia in the oral glucose tolerance test significantly more than SITA only (area under the curve reduced 28 %, P < 0.0001). In addition, B420, PDX or B420+PDX, together with SITA, further decreased fasting glucose concentrations compared to SITA only (−19.5, −40 and −49 %, respectively, P < 0.01 for each comparison). The effect of PDX may be due to its ability to increase portal vein GLP-1 concentrations together with SITA (P = 0.0001 compared to vehicle) whereas SITA alone had no statistically significant effect compared to vehicle (P = 0.14).

Conclusions

This study proposes that combining probiotics and/or prebiotics with antidiabetic drugs improves glycemic control and insulin sensitivity in mice. Mechanisms could be related to incretin secretion.

【 授权许可】

   
2015 Stenman et al.

【 预 览 】
附件列表
Files Size Format View
20150917031933892.pdf 1169KB PDF download
Fig.3. 67KB Image download
Fig.2. 93KB Image download
Fig.1. 63KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

【 参考文献 】
  • [1]Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R Jr: Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol 2013, 51(2):R51-R64.
  • [2]Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al.: Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57(6):1470-1481.
  • [3]Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, et al.: Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61(4):543-553.
  • [4]Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al.: Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 2012, 7(3):e34233.
  • [5]Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J, Ferreira CL, et al.: Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr. 2012, 31(5):735-740.
  • [6]Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al.: Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011, 3(9):559-572.
  • [7]Burcelin R, Serino M, Chabo C, Garidou L, Pomie C, Courtney M, et al.: Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013, 15(Suppl 3):61-70.
  • [8]Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, et al.: Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab 2013, 2(3):281-291.
  • [9]Burcelin R, Garidou L, Pomie C: Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol 2012, 24(1):67-74.
  • [10]Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444(7122):1027-1031.
  • [11]Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444(7122):1022-1023.
  • [12]D’Aversa F, Tortora A, Ianiro G, Ponziani FR, Annicchiarico BE, Gasbarrini A: Gut microbiota and metabolic syndrome. Intern Emerg Med 2013, 8(Suppl 1):S11-S15.
  • [13]Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M: Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015, 38(1):159-165.
  • [14]Walters WA, Xu Z, Knight R: Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014, 588(22):4223-4233.
  • [15]Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al.: Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500(7464):541-546.
  • [16]Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al.: Dietary intervention impact on gut microbial gene richness. Nature 2013, 500(7464):585-588.
  • [17]Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, et al.: Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr 2010, 104(12):1831-1838.
  • [18]Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al.: Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012, 143(4):913-916.
  • [19]Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al.: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007, 50(11):2374-2383.
  • [20]Russo F, Riezzo G, Chiloiro M, De Michele G, Chimienti G, Marconi E, et al.: Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Curr Pharm Des 2010, 16(7):825-831.
  • [21]Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, et al.: Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 2010, 74(8):1656-1661.
  • [22]Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, et al.: Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 2013, 8(3):e59470.
  • [23]Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A: Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 2014, 65(1):117-123.
  • [24]Stenman LK, Waget A, Garret C, Klopp P, Burcelin R, Lahtinen S: Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef Microb 2014, 5(4):437-445.
  • [25]Ibarra A, Astbury NM, Olli K, Alhoniemi E, Tiihonen K: Effects of polydextrose on different levels of energy intake. A systematic review and meta-analysis. Appetite 2015, 87:30-37.
  • [26]Jie Z, Bang-Yao L, Ming-Jie X, Hai-Wei L, Zu-Kang Z, Ting-Song W, et al.: Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr 2000, 72(6):1503-1509.
  • [27]Schwab U, Louheranta A, Torronen A, Uusitupa M: Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur J Clin Nutr 2006, 60(9):1073-1080.
  • [28]Duncan LJ, Seaton DA: The treatment of diabetes mellitus with metformin. Br J Clin Pract 1962, 16:129-132.
  • [29]Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B: Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab. 2002, 282(4):E834-E842.
  • [30]Pernicova I, Korbonits M: Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014, 10(3):143-156.
  • [31]Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, et al.: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013, 153(1):228-239.
  • [32]Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al.: An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63(5):727-735.
  • [33]Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al.: Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013, 110(22):9066-9071.
  • [34]Burcelin R: The antidiabetic gutsy role of metformin uncovered? Gut 2014, 63(5):706-707.
  • [35]Lovshin JA, Drucker DJ: Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009, 5(5):262-269.
  • [36]Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M, Karaca M, et al.: Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 2011, 152(8):3018-3029.
  • [37]Nielsen R, Wiggers H, Halbirk M, Botker H, Holst JJ, Schmitz O, et al.: Metabolic effects of short-term GLP-1 treatment in insulin resistant heart failure patients. Exp Clin Endocrinol Diabetes 2012, 120(5):266-272.
  • [38]Putaala H, Salusjarvi T, Nordstrom M, Saarinen M, Ouwehand AC, Bech Hansen E, et al.: Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res Microbiol 2008, 159(9–10):692-698.
  • [39]Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M, et al.: The gut microbiota regulates intestinal CD4 T cells expressing ROR-gamma-t and controls metabolic disease. Cell Metab 2015, 22(1):100-112.
  • [40]Habbout A, Li N, Rochette L, Vergely C: Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr 2013, 143(5):553-562.
  • [41]Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC: Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 2010, 151(12):5617-5623.
  文献评价指标  
  下载次数:53次 浏览次数:31次