期刊论文详细信息
Gut Pathogens
The impact of Toll-like-receptor-9 on intestinal microbiota composition and extra-intestinal sequelae in experimental Toxoplasma gondii induced ileitis
Markus M Heimesaat3  Ildikò R Dunay1  Ulf B Göbel3  Oliver Liesenfeld3  Daniela Struck3  Luisa Möhle1  André Fischer3  Marie Alutis3  Anja A Kühl2  Stefan Bereswill3 
[1] Department of Microbiology and Hygiene, University of Magdeburg, Magdeburg, Germany;Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany;Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Centrum 5, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
关键词: Gut-brain-axis;    Regulatory T cells;    FOXP3;    Bifidobacteria;    Systemic inflammatory response;    Bacterial translocation;    Intestinal microbiota composition;    Pro-inflammatory cytokines;    Intracerebral inflammation;    Extra-intestinal immune responses;    Th1-type immunopathology;    TLR-9;    Acute ileitis;    Toxoplasma gondii;   
Others  :  817428
DOI  :  10.1186/1757-4749-6-19
 received in 2014-04-14, accepted in 2014-05-26,  发布年份 2014
PDF
【 摘 要 】

Background

Following peroral Toxoplasma (T.) gondii infection, susceptible mice develop acute ileitis due to a microbiota-dependent Th1 type immunopathology. Toll-like-receptor (TLR)-9 is known to recognize bacterial DNA and mediates intestinal inflammation, but its impact on intestinal microbiota composition and extra-intestinal sequelae following T. gondii infection has not yet been elucidated.

Methods and results

Seven days following peroral infection (p.i.) with 100 cysts of T. gondii ME49 strain, TLR-9-/- and wildtype (WT) mice suffered from comparable ileitis, whereas ileal parasitic loads as well as IFN-γ and nitric oxide levels were higher in TLR-9-/- compared to WT mice. Locally, TLR-9-/- mice exhibited increased ileal CD3+, but not FOXP3+ cell numbers at day 7 p.i.; in mesenteric lymph nodes IFN-γ-producing CD4+ cell numbers and TNF-α and IFN-γ concentrations were also increased in TLR-9-/- compared to WT mice. T. gondii DNA levels, however, did not differ in mice of either genotype. Differences in intestinal microbiota were rather subtle except for bifidobacteria that were virtually absent in both, naïve and T. gondii infected TLR-9-/-, but not WT mice. Extra-intestinally, TLR-9-/- mice displayed less distinct systemic immune responses as indicated by lower serum IL-6, and splenic TNF-α and IFN-γ levels as compared to WT mice despite higher translocation rates of intestinal bacteria to extra-intestinal compartments such as liver, spleen, kidney, and cardiac blood. Most importantly, brains were also affected in this inflammatory scenario as early as day 7 p.i. Remarkably, TLR-9-/- mice exhibited more pronounced inflammatory infiltrates with higher numbers of F4/80+ macrophages and microglia in the cortex and meninges as compared to WT mice, whereas T. gondii DNA levels did not differ.

Conclusion

We here show that TLR-9 is not required for the development of T. gondii induced ileitis but mediates distinct inflammatory changes in intestinal and extra-intestinal compartments including the brain.

【 授权许可】

   
2014 Bereswill et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711003003983.pdf 1979KB PDF download
Figure 10. 20KB Image download
Figure 9. 76KB Image download
Figure 8. 64KB Image download
Figure 7. 34KB Image download
Figure 6. 87KB Image download
Figure 5. 40KB Image download
Figure 4. 41KB Image download
Figure 3. 57KB Image download
Figure 2. 60KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Liesenfeld O, Kosek J, Remington JS, Suzuki Y: Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 1996, 184:597-607.
  • [2]Munoz M, Liesenfeld O, Heimesaat MM: Immunology of Toxoplasma gondii. Immunol Rev 2011, 240:269-285.
  • [3]Khan IA, Schwartzman JD, Matsuura T, Kasper LH: A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci U S A 1996, 94:13955-13960.
  • [4]Liesenfeld O, Kang H, Park D, Nguyen TA, Parkhe CV, Watanabe H, Abo T, Sher A, Remington JS, Suzuki Y: TNF-alpha, nitric oxide and IFN-gamma are all critical for development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol 1999, 21:365-376.
  • [5]Mennechet FJL, Kasper H, Rachinel N, Li W, Vandewalle A, Buzoni-Gatel D: Lamina propria CD4+ T lymphocytes synergize with murine intestinal epithelial cells to enhance proinflammatory response against an intracellular pathogen. J Immunol 2002, 168:2988-2996.
  • [6]Vossenkamper A, Struck D, Alvarado-Esquivel C, Went T, Takeda K, Akira S, Pfeffer K, Alber G, Lochner M, Forster I, Liesenfeld O: Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur J Immunol 2004, 34:3197-3207.
  • [7]Buzoni-Gatel D, Schulthess J, Menard LC, Kasper LH: Mucosal defences against orally acquired protozoan parasites, emphasis on Toxoplasma gondii infections. Cell Microbiol 2006, 8:535-544.
  • [8]Liesenfeld O: Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease? J Infect Dis 2002, 185(Suppl 1):S96-S101.
  • [9]Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR, Moter A, Gescher DM, Schumann RR, Göbel UB, Liesenfeld O: Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. J Immunol 2006, 177:8785-8795.
  • [10]Heimesaat MM, Fischer A, Jahn HK, Niebergall J, Freudenberg JM, Blaut M, Liesenfeld O, Schumann RR, Göbel UB, Bereswill S: Exacerbation of murine ileitis by Toll-like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli. Gut 2007, 56:941-948.
  • [11]Erridge C, Duncan SH, Bereswill S, Heimesaat MM: The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PLoS One 2011, 5:e9125.
  • [12]Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408:740-745.
  • [13]Takeda K, Akira S: Toll-like receptors in innate immunity. Int Immunol 2005, 17:1-14.
  • [14]Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S: Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 2004, 34:2541-2550.
  • [15]Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC, Taniguchi T: Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A 2004, 101:15416-15421.
  • [16]Kim JM, Kim NI, Oh YK, Kim YJ, Youn J, Ahn MJ: CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-kappaB-independent pathways. Int Immunol 2005, 17:1525-1531.
  • [17]Minns LA, Menard LC, Foureau DM, Darche S, Ronet C, Mielcarz DW, Buzoni-Gatel D, Kasper LH: TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. J Immunol 2006, 176:7589-7597.
  • [18]Yarovinsky F: Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 2014, 14:109-121.
  • [19]Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, Bartholomeu DC, Ghosh S, Golenbock DT, Gazzinelli RT: Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe 2013, 13:42-53.
  • [20]Benson A, Pifer R, Behrendt CL, Hooper LV, Yarovinsky F: Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 2009, 6:187-196.
  • [21]Suzuki Y, Sher A, Yap G, Park D, Neyer LE, Liesenfeld O, Fort M, Kang H, Gufwoli E: IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol 2000, 164:5375-5382.
  • [22]Munoz M, Heimesaat MM, Danker K, Struck D, Lohmann U, Plickert R, Bereswill S, Fischer A, Dunay IR, Wolk K, Loddenkemper C, Krell HW, Libert C, Lund LR, Frey O, Holscher C, Iwakura Y, Ghilardi N, Ouyang W, Kamradt T, Sabat R, Liesenfeld O: Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med 2009, 206:3047-3059.
  • [23]Belkaid Y, Hand TW: Role of the microbiota in immunity and inflammation. Cell 2014, 157:121-141.
  • [24]Foureau DM, Mielcarz DW, Menard LC, Schulthess J, Werts C, Vasseur V, Ryffel B, Kasper LH, Buzoni-Gatel D: TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii. J Immunol 2010, 184:7022-7029.
  • [25]Heimesaat MM, Dunay IR, Fuchs D, Trautmann D, Fischer A, Kühl AA, Loddenkemper C, Siegmund B, Batra A, Bereswill S, Liesenfeld O: The distinct roles of MMP-2 and MMP-9 in acute DSS colitis. Eur J Microbiol Immunol (Bp) 2011, 1:302-310.
  • [26]Deloris Alexander A, Orcutt RP, Henry JC, Baker JJR, Bissahoyo AC, Threadgill DW: Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm Genome 2006, 17:1093-1104.
  • [27]Ge Z, Feng Y, Taylor NS, Ohtani M, Polz MF, Schauer DB, Fox JG: Colonization dynamics of altered Schaedler flora is influenced by gender, aging, and Helicobacter hepaticus infection in the intestines of Swiss Webster mice. Appl Environ Microbiol 2006, 72:5100-5103.
  • [28]Sydora BC, Macfarlane SM, Walker JW, Dmytrash AL, Churchill TA, Doyle J, Fedorak RN: Epithelial barrier disruption allows nondisease-causing bacteria to initiate and sustain IBD in the IL-10 gene-deficient mouse. Inflamm Bowel Dis 2007, 13:947-954.
  • [29]Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, Dunne WMJR, Allen PM, Stappenbeck TS: Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 2011, 9:390-403.
  • [30]Sartor RB: Microbial influences in inflammatory bowel diseases. Gastroenterology 2008, 134:577-594.
  • [31]Sartor RB: Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology 2010, 139:1816-1819.
  • [32]O’Mahony D, Murphy S, Boileau T, Park J, O’Brien F, Groeger D, Konieczna P, Ziegler M, Scully , Shanahan PF, Kiely B, O’Mahony L: Bifidobacterium animalis AHC7 protects against pathogen-induced NF-kappaB activation in vivo. BMC Immunol 2010, 11:63. BioMed Central Full Text
  • [33]Dunay IR, Heimesaat MM, Bushrab FN, Muller RH, Stocker H, Arasteh K, Kurowski M, Fitzner R, Borner K, Liesenfeld O: Atovaquone maintenance therapy prevents reactivation of toxoplasmic encephalitis in a murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 2004, 48:4848-4854.
  • [34]Mohle L, Parlog A, Pahnke J, Dunay IR: Spinal cord pathology in chronic experimental Toxoplasma gondii infection. Eur J Microbiol Immunol (Bp) 2014, 4:65-75.
  • [35]Dunay IR, Damatta A, Fux B, Presti R, Greco S, Colonna M, Sibley LD: Gr1 (+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 2008, 29:306-317.
  • [36]Young GB: Encephalopathy of infection and systemic inflammation. J Clin Neurophysiol 2013, 30:454-461.
  • [37]Mishra BB, Mishra PK, Teale JM: Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 2006, 181:46-56.
  • [38]Carty M, Bowie AG: Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem Pharmacol 2011, 81:825-837.
  • [39]Basset C, Holton J: Inflammatory bowel disease: is the intestine a Trojan horse? Sci Prog 2002, 85:33-56.
  • [40]Martinesi M, Treves C, Bonanomi AG, Milla M, Bagnoli S, Zuegel , Steinmeyer UA, Stio M: Down-regulation of adhesion molecules and matrix metalloproteinases by ZK 156979 in inflammatory bowel diseases. Clin Immunol 2010, 136:51-60.
  • [41]Naito Y, Takagi T, Kuroda M, Katada K, Ichikawa H, Kokura S, Yoshida N, Okanoue NT, Yoshikawa T: An orally active matrix metalloproteinase inhibitor, ONO-4817, reduces dextran sulfate sodium-induced colitis in mice. Inflamm Res 2004, 53:462-468.
  • [42]Wang M, Qin X, Mudgett JS, Ferguson TA, Senior RM, Welgus HG: Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc Natl Acad Sci U S A 1999, 96:6885-6889.
  • [43]Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, Steinhoff U, Tchaptchet S, Thiel E, Freudenberg MA, Göbel UB, Uharek L: MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 2010, 59:1079-1087.
  • [44]Heimesaat MM, Plickert R, Fischer A, Göbel UB, Bereswill S: Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni? Eur J Microbiol Immunol (Bp) 2013, 3:36-43.
  • [45]Bereswill S, Fischer A, Plickert R, Haag LM, Otto B, Kühl AA, Dashti JL, Zautner AE, Munoz M, Loddenkemper C, Gross U, Göbel UB, Heimesaat MM: Novel murine infection models provide deep insights into the “Menage a Trois” of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 2011, 6:e20953.
  • [46]Haag LM, Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM: Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling. PLoS One 2012, 7:e40761.
  • [47]Heimesaat MM, Haag LM, Fischer A, Otto B, Kühl AA, Göbel UB, Bereswill S: Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice. Eur J Microbiol Immunol (Bp) 2013, 3:174-182.
  • [48]Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S: Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 2013, 8:e74026.
  • [49]Heimesaat MM, Boelke S, Fischer A, Haag LM, Loddenkemper C, Kühl AA, Göbel UB, Bereswill S: Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One 2012, 7:e40758.
  • [50]Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA: A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 2005, 165:63-74.
  • [51]Butcher BA, Fox BA, Rommereim LM, Kim SG, Maure KJ, Yarovinsky F, Herbert DR, Bzik DJ, Denker EY: Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog 2011, 7:e1002236.
  文献评价指标  
  下载次数:73次 浏览次数:16次