期刊论文详细信息
Genome Biology
Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production
Patrick J Brown1  Race H Higgins1  Justin M Ma2  Carrie S Thurber2 
[1] Department of Crop Sciences, University of Illinois, Urbana, IL, USA;Energy Biosciences Institute, University of Illinois, Urbana, IL, USA
关键词: dwarfism;    flowering time;    photoperiod;    introgression;    Genotyping-by-sequencing;   
Others  :  864158
DOI  :  10.1186/gb-2013-14-6-r68
 received in 2013-03-28, accepted in 2013-06-26,  发布年份 2013
PDF
【 摘 要 】

Background

Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation.

Results

We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time.

Conclusions

Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.

【 授权许可】

   
2013 Thurber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725083644931.pdf 2138KB PDF download
37KB Image download
71KB Image download
51KB Image download
57KB Image download
67KB Image download
65KB Image download
【 图 表 】

【 参考文献 】
  • [1]Gepts P: Crop domestication as a long-term selection experiment. Plant Breeding Reviews 2004, 24:1-44.
  • [2]Harlan JR, De Wet JMJ, Price EG: Comparative evolution of cereals. Evolution 1973, 27:311-325.
  • [3]Purugganan MD, Fuller DQ: The nature of selection during plant domestication. Nature 2009, 457:843-848.
  • [4]Khush GS: Green revolution: preparing for the 21st century. Genome 1999, 42:646-655.
  • [5]Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F: "Green revolution" genes encode mutant gibberellin response modulators. Nature 1999, 400:256-260.
  • [6]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS: Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'green revolution'. Breeding Science 2002, 52:143-150.
  • [7]Hedden P: The genes of the Green Revolution. Trends Genet 2003, 19:5-9.
  • [8]Food and Agriculture Organization of the United Nations. [http://www.fao.org/index_en.htm] webcite
  • [9]Smith CW, Frederiksen RA: Sorghum: Origin, History, Technology, and Production. Hoboken, NJ: John Wiley & Sons; 2000.
  • [10]Quinby JR: Sorghum improvement and the genetics of growth. College Station, TX: Texas A&M University Press; 1974.
  • [11]Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE: Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 2011, 108:16469-16474.
  • [12]Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE: The Sorghum Photoperiod Sensitivity Gene, Ma3, Encodes a Phytochrome B. Plant Physiol 1997, 113:611-619.
  • [13]Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS: Loss of an MDR Transporter in Compact Stalks of Maize br2 and Sorghum dw3 Mutants. Science 2003, 302:81-84.
  • [14]Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE: The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Science 2008, 48:S-12.
  • [15]Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S: Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 2013, 110:453-458.
  • [16]Brown PJ, Rooney WL, Franks C, Kresovich S: Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 2008, 180:629-637.
  • [17]Stephens JC, Miller FR, Rosenow DT: Conversion of alien sorghums to early combine genotypes. Crop Science 1967, 7:396-396.
  • [18]Poland JA, Brown PJ, Sorrells ME, Jannink J-L: Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 2012, 7:e32253.
  • [19]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6:e19379.
  • [20]Buckler Lab for Maize Genetics and Diversity. [http://www.maizegenetics.net/] webcite
  • [21]Hill WG: Variation in genetic identity within kinships. Heredity 1993, 71:652-653.
  • [22]Mace ES, Jordan DR: Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 2010, 121:1339-1356.
  • [23]Parh DK, Jordan DR, Aitken EA, Mace ES, Jun-Ai P, McIntyre CL, Godwin ID: QTL analysis of ergot resistance in sorghum. Theor Appl Genet 2008, 117:369-382.
  • [24]Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL: Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 2001, 102:307-319.
  • [25]Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N: Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 2009, 119:1425-1439.
  • [26]Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J: Parallel domestication of the Shattering1 genes in cereals. Nat Genet 2012, 44:720-724.
  • [27]National Plant Germplasm System. [http://www.ars-grin.gov/npgs/] webcite
  • [28]Mace ES, Buhariwalla KK, Buhariwalla HK, Crouch JH: A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 2003, 21:459-460.
  • [29]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [30]Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A: The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457:551-556.
  • [31]The Comprehensive R Archive Network. [http://cran.r-project.org/] webcite
  • [32]Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z: GAPIT: genome association and prediction integrated tool. Bioinformatics 2012, 28:2397-2399.
  文献评价指标  
  下载次数:76次 浏览次数:27次