期刊论文详细信息
Epigenetics & Chromatin
Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci
Marion Cremer1  Lothar Schermelleh3  Thomas Cremer1  Neil Brockdorff3  Heinrich Leonhardt1  Jens Popken1  Justin Demmerle3  Susanne Fiedler1  Michael Sterr1  Andrea Cerase3  Anna Tattermusch3  Felix Kraus3  Volker J Schmid2  Yolanda Markaki1  Daniel Smeets3 
[1] Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany;Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany;Department of Biochemistry, University of Oxford, Oxford, UK
关键词: SAF-A;    Interchromatin compartment;    Chromatin domain;    Barr body;    Xist RNA;    CT;    Chromosome territory;    Inactive X chromosome;    X chromosome inactivation;    Super-resolution microscopy;   
Others  :  813325
DOI  :  10.1186/1756-8935-7-8
 received in 2014-04-02, accepted in 2014-04-11,  发布年份 2014
PDF
【 摘 要 】

Background

A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).

Results

We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.

Conclusions

3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.

【 授权许可】

   
2014 Smeets et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710001107309.pdf 6479KB PDF download
Figure 8. 197KB Image download
Figure 7. 197KB Image download
Figure 6. 176KB Image download
Figure 5. 192KB Image download
Figure 4. 200KB Image download
Figure 3. 266KB Image download
Figure 2. 187KB Image download
Figure 1. 222KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Heard E: Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 2004, 16:247-255.
  • [2]Payer B, Lee JT: X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 2008, 42:733-772.
  • [3]Pontier DB, Gribnau J: Xist regulation and function explored. Hum Genet 2011, 130:223-236.
  • [4]Barr ML, Bertram EG: A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 1949, 163:676.
  • [5]Lyon MF: Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190:372-373.
  • [6]Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E: Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 2004, 303:644-649.
  • [7]Zuccotti M, Boiani M, Ponce R, Guizzardi S, Scandroglio R, Garagna S, Redi CA: Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev 2002, 61:14-20.
  • [8]Payer B, Lee JT, Namekawa SH: X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum Genet 2011, 130:265-280.
  • [9]Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 1991, 349:38-44.
  • [10]Brockdorff N: Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development 2011, 138:5057-5065.
  • [11]Gendrel AV, Apedaile A, Coker H, Termanis A, Zvetkova I, Godwin J, Tang YA, Huntley D, Montana G, Taylor S, Giannoulatou E, Heard E, Stancheva I, Brockdorff N: Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev Cell 2012, 23:265-279.
  • [12]Heard E, Chaumeil J, Masui O, Okamoto I: Mammalian X-chromosome inactivation: an epigenetics paradigm. Cold Spring Harb Symp Quant Biol 2004, 69:89-102.
  • [13]Jeon Y, Sarma K, Lee JT: New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev 2012, 22:62-71.
  • [14]Yang C, Chapman AG, Kelsey AD, Minks J, Cotton AM, Brown CJ: X-chromosome inactivation: molecular mechanisms from the human perspective. Hum Genet 2011, 130:175-185.
  • [15]Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, Zhu Y, Kaaij LJ, van Ijcken W, Gribnau J, Heard E, de Laat W: The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011, 25:1371-1383.
  • [16]Nozawa RS, Nagao K, Igami KT, Shibata S, Shirai N, Nozaki N, Sado T, Kimura H, Obuse C: Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol 2013, 20:566-573.
  • [17]Cremer T, Cremer M: Chromosome territories. Cold Spring Harb Perspect Biol 2010, 2:a003889.
  • [18]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
  • [19]Gibcus JH, Dekker J: The hierarchy of the 3D genome. Mol Cell 2013, 49:773-782.
  • [20]Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T: Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006, 14:707-733.
  • [21]Cremer T, Cremer C: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001, 2:292-301.
  • [22]Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S: Chromosome territories - a functional nuclear landscape. Curr Opin Cell Biol 2006, 18:307-316.
  • [23]Rouquette J, Genoud C, Vazquez-Nin GH, Kraus B, Cremer T, Fakan S: Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 2009, 17:801-810.
  • [24]Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T: Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 2003, 160:685-697.
  • [25]Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH: Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 1998, 102:241-251.
  • [26]Fakan S, van Driel R: The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 2007, 18:676-681.
  • [27]Fakan S: Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol 1994, 4:86-90.
  • [28]Fakan S, Hancock R: Localization of newly-synthesized DNA in a mammalian cell as visualized by high resolution autoradiography. Exp Cell Res 1974, 83:95-102.
  • [29]Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T: Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 2010, 75:475-492.
  • [30]Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y: Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 2010, 12:543-552.
  • [31]Schermelleh L1, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW: Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008, 320:1332-1336.
  • [32]Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB: The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 2006, 103:7688-7693.
  • [33]Eils R, Dietzel S, Bertin E, Schrock E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T: Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 1996, 135:1427-1440.
  • [34]Teller K, Illner D, Thamm S, Casas-Delucchi CS, Versteeg R, Indemans M, Cremer T, Cremer M: A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥20 Mb genomic length scales. Nucleus 2011, 2:465-477.
  • [35]Chaumeil J, Le Baccon P, Wutz A, Heard E: A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 2006, 20:2223-2237.
  • [36]Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T: Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 2012, 151:951-963.
  • [37]Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS: The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 2008, 121:1119-1127.
  • [38]Cremer C, Kaufmann R, Gunkel M, Pres S, Weiland Y, Müller P, Ruckelshausen T, Lemmer P, Geiger F, Degenhard S, Wege C, Lemmermann NA, Holtappels R, Strickfaden H, Hausmann M: Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J 2011, 6:1037-1051.
  • [39]Hell SW: Far-field optical nanoscopy. Science 2007, 316:1153-1158.
  • [40]Huang B, Babcock H, Zhuang X: Breaking the diffraction barrier: super-resolution imaging of cells. Cell 2010, 143:1047-1058.
  • [41]Rouquette J, Cremer C, Cremer T, Fakan S: Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 2010, 282:1-90.
  • [42]Schermelleh L, Heintzmann R, Leonhardt H: A guide to super-resolution fluorescence microscopy. J Cell Biol 2010, 190:165-175.
  • [43]Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 2008, 94:4957-4970.
  • [44]Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M: The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 2012, 34:412-426.
  • [45]Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E: Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485:381-385.
  • [46]Arthold S, Kurowski A, Wutz A: Mechanistic insights into chromosome-wide silencing in X inactivation. Hum Genet 2011, 130:295-305.
  • [47]Wutz A: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011, 12:542-553.
  • [48]Markaki Y, Smeets D, Cremer M, Schermelleh L: Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Methods Mol Biol 2013, 950:43-64.
  • [49]Wutz A, Jaenisch R: A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 2000, 5:695-705.
  • [50]Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013, 341:1237973.
  • [51]Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T: Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 2002, 276:10-23.
  • [52]Chazotte B: Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc 2011. doi: 10.1101/pdb.prot5556
  • [53]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Mouse Genome Sequencing Consortium, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-562.
  • [54]Zhou VW, Goren A, Bernstein BE: Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011, 12:7-18.
  • [55]Faro-Trindade I, Cook PR: A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell 2006, 17:2910-2920.
  • [56]Berletch JB, Yang F, Xu J, Carrel L, Disteche CM: Genes that escape from X inactivation. Hum Genet 2011, 130:237-245.
  • [57]Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453:948-951.
  • [58]Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW: Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 2010, 140:372-383.
  • [59]Sengupta AK, Ohhata T, Wutz A: X chromosome inactivation. In Epigenetics. Edited by Tost J. Norwich: Caister Aademic Press; 2008:273-301.
  • [60]Sun BK, Deaton AM, Lee JT: A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 2006, 21:617-628.
  • [61]Clemson CM, Chow JC, Brown CJ, Lawrence JB: Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation. J Cell Biol 1998, 142:13-23.
  • [62]Hubner B, Cremer T, Neumann J: Correlative microscopy of individual cells: sequential application of microscopic systems with increasing resolution to study the nuclear landscape. Methods Mol Biol 2013, 1042:299-336.
  • [63]Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Nakagawa S: The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 2010, 19:469-476.
  • [64]Nakagawa S, Prasanth KV: eXIST with matrix-associated proteins. Trends Cell Biol 2011, 21:321-327.
  • [65]Helbig R, Fackelmayer FO: Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 2003, 112:173-182.
  • [66]Cerase A, Smeets D, Tang YA, Gdula M, Kraus F, Spivakov M, Moindrot B, Leleu M, Tattermusch A, Demmerle J, Nesterova TB, Green C, Otte AP, Schermelleh L, Brockdorff N: Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci U S A 2014, 111:2235-2240.
  • [67]Chadwick BP: Variation in Xi chromatin organization and correlation of the H3K27me3 chromatin territories to transcribed sequences by microarray analysis. Chromosoma 2007, 116:147-157.
  • [68]Marks H, Chow JC, Denissov S, Francoijs KJ, Brockdorff N, Heard E, Stunnenberg HG: High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 2009, 19:1361-1373.
  • [69]Chadwick BP, Willard HF: Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci U S A 2004, 101:17450-17455.
  • [70]Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J: Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol Cell Biol 2008, 28:5583-5594.
  • [71]Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N: Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 1997, 91:99-107.
  • [72]Panning B, Dausman J, Jaenisch R: X chromosome inactivation is mediated by Xist RNA stabilization. Cell 1997, 90:907-916.
  • [73]Lee JT, Davidow LS, Warshawsky D: Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 1999, 21:400-404.
  • [74]Lee JT, Jaenisch R: Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 1997, 386:275-279.
  • [75]Tang YA, Huntley D, Montana G, Cerase A, Nesterova TB, Brockdorff N: Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation. Epigenetics Chromatin 2010, 3:10. BioMed Central Full Text
  • [76]Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C: Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 2000, 10:179-212.
  • [77]Jaunin F, Fakan S: DNA replication and nuclear architecture. J Cell Biochem 2002, 85:1-9.
  • [78]Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
  • [79]Bickmore WA, van Steensel B: Genome architecture: domain organization of interphase chromosomes. Cell 2013, 152:1270-1284.
  • [80]Dekker J, Marti-Renom MA, Mirny LA: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013, 14:390-403.
  • [81]Ahn JY, Lee JT: Retinoic acid accelerates downregulation of the Xist repressor, Oct4, and increases the likelihood of Xist activation when Tsix is deficient. BMC Dev Biol 2010, 10:90. BioMed Central Full Text
  • [82]Heard E, Bickmore W: The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 2007, 19:311-316.
  • [83]Jeon Y, Lee JT: YY1 tethers Xist RNA to the inactive X nucleation center. Cell 2011, 146:119-133.
  • [84]Clemson CM, McNeil JA, Willard HF, Lawrence JB: XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 1996, 132:259-275.
  • [85]Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P, Walker R, Ellenberg J, Wutz A: A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol Biol Cell 2011, 22:2634-2645.
  • [86]Buzin CH, Mann JR, Singer-Sam J: Quantitative RT-PCR assays show Xist RNA levels are low in mouse female adult tissue, embryos and embryoid bodies. Development 1994, 120:3529-3536.
  • [87]Duszczyk MM, Zanier K, Sattler M: A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res 2008, 36:7068-7077.
  • [88]Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V, Dubois A, Sanglier-Cianferani S, Van Dorsselaer A, Clerc P, Avner P, Visvikis A, Branlant C: 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 2010, 8:e1000276.
  • [89]Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM, Zakian SM, Brockdorff N: Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 1999, 8:195-204.
  • [90]Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT: Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 2012, 22:1864-1876.
  • [91]Romig H, Fackelmayer FO, Renz A, Ramsperger U, Richter A: Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J 1992, 11:3431-3440.
  • [92]Han SP, Tang YH, Smith R: Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 2010, 430:379-392.
  • [93]Fackelmayer FO, Dahm K, Renz A, Ramsperger U, Richter A: Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 1994, 221:749-757.
  • [94]Tattermusch A, Brockdorff N: A scaffold for X chromosome inactivation. Hum Genet 2011, 130:247-253.
  • [95]Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL: Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 2001, 107:727-738.
  • [96]Nora EP, Heard E: Chromatin structure and nuclear organization dynamics during X-chromosome inactivation. Cold Spring Harb Symp Quant Biol 2010, 75:333-344.
  • [97]Mahy NL, Perry PE, Bickmore WA: Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 2002, 159:753-763.
  • [98]Kupper K, Kolbl A, Biener D, Dittrich S, Von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M: Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 2007, 116:285-306.
  • [99]Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D: Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000, 113(Pt 9):1565-1576.
  • [100]Popova BC, Tada T, Takagi N, Brockdorff N, Nesterova TB: Attenuated spread of X-inactivation in an X;autosome translocation. Proc Natl Acad Sci U S A 2006, 103:7706-7711.
  • [101]Baddeley D, Chagin VO, Schermelleh L, Martin S, Pombo A, Carlton PM, Gahl A, Domaing P, Birk U, Leonhardt H, Cremer C, Cardoso MC: Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 2010, 38:e8.
  • [102]Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R: Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol 1998, 143:1415-1425.
  • [103]Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P: Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 1993, 58:777-792.
  • [104]Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S, Ahmed K, Samarajiwa SA, Salama R, Carroll T, Stark R, Janky R, Narita M, Xue L, Chicas A, Nũnez S, Janknecht R, Hayashi-Takanaka Y, Wilson MD, Marshall A, Odom DT, Babu MM, Bazett-Jones DP, Tavaré S, Edwards PA, Lowe SW, Kimura H, Gilbert DM, Narita M: Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 2012, 47:203-214.
  • [105]Illner D, Zinner R, Handtke V, Rouquette J, Strickfaden H, Lanctot C, Conrad M, Seiler A, Imhof A, Cremer T, Cremer M: Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin. Exp Cell Res 2010, 316:1662-1680.
  • [106]Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Zakhartchenko V, Wolf E, Cremer T: Major genome activation in bovine embryos involves a massive reorganization of nuclear architecture. Nucleus 2014. in press
  • [107]Mirny LA: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 2011, 19:37-51.
  • [108]Casas-Delucchi CS, Brero A, Rahn HP, Solovei I, Wutz A, Cremer T, Leonhardt H, Cardoso MC: Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun 2011, 2:222.
  • [109]Kanda T, Sullivan KF, Wahl GM: Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 1998, 8:377-385.
  • [110]Lee JT, Lu N: Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 1999, 99:47-57.
  • [111]Cremer M, Grasser F, Lanctot C, Muller S, Neusser M, Zinner R, Solovei I, Cremer T: Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 2008, 463:205-239.
  • [112]Egloff S, Murphy S: Cracking the RNA polymerase II CTD code. Trends Genet 2008, 24:280-288.
  • [113]Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR, Davis I: OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harb Protoc 2011, 2011:899-909.
  • [114]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2011.
  • [115]Zhang Y, Brady M, Smith S: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001, 20:45-57.
  • [116]Ollion J, Cochennec J, Loll F, Escude C, Boudier T: TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 2013, 29:1840-1841.
  • [117]Kapuscinski J: DAPI: a DNA-specific fluorescent probe. Biotech Histochem 1995, 70:220-233.
  • [118]Zhang L, Kasif S, Cantor CR, Broude NE: GC/AT-content spikes as genomic punctuation marks. Proc Natl Acad Sci U S A 2004, 101:16855-16860.
  • [119]Komissarov AS, Gavrilova EV, Demin SJ, Ishov AM, Podgornaya OI: Tandemly repeated DNA families in the mouse genome. BMC Genomics 2011, 12:531. BioMed Central Full Text
  • [120]Kimura H, Cook PR: Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 2001, 153:1341-1353.
  • [121]Moldovan GL, Pfander B, Jentsch S: PCNA, the maestro of the replication fork. Cell 2007, 129:665-679.
  文献评价指标  
  下载次数:17次 浏览次数:11次