期刊论文详细信息
Journal of Angiogenesis Research
Specific tumor-stroma interactions of EBV-positive Burkitt's lymphoma cells in the chick chorioallantoic membrane
Jörg Wilting1  Dieter Kube2  Frederike von Bonin2  Ana Covelo-Fernandez2  Jürgen Becker1 
[1] Department of Anatomy and Cell Biology, University Medicine Goettingen, 37075 Goettingen, Germany;Department of Hematology and Oncology, University Medicine Goettingen, 37075 Goettingen, Germany
关键词: esVEGFR-2;    VEGF-C;    VEGF-A;    Dissemination;    Lymphatics;    BL74;    BL2B95;    BL2;    EBV;    Burkitt's lymphoma;   
Others  :  802106
DOI  :  10.1186/2045-824X-4-3
 received in 2012-01-26, accepted in 2012-03-09,  发布年份 2012
PDF
【 摘 要 】

Background

Burkitt's lymphoma (BL) is an aggressive Non-Hodgkin lymphoma. Epstein-Barr Virus (EBV) is able to transform B cells and is a causative infectious agent in BL. The precise role of EBV in lymphoma progression is still unclear. Most investigations have concentrated on cell autonomous functions of EBV in B cells. Functions of the local environment in BL progression have rarely been studied, mainly due to the lack of appropriate in vivo models. Therefore, we inoculated different human BL cell-lines onto the chorioallantoic membrane (CAM) of embryonic day 10 (ED10) chick embryos and re-incubated until ED14 and ED17.

Results

All cell-lines formed solid tumors. However, we observed strong differences in the behavior of EBV+ and EBV- cell-lines. Tumor borders of EBV+ cells were very fuzzy and numerous cells migrated into the CAM. In EBV- tumors, the borders were much better defined. In contrast to EBV- cells, the EBV+ cells induced massive immigration of chick leukocytes at the tumor borders and the development of granulation tissue with large numbers of blood vessels and lymphatics, although the expression of pro- and anti-angiogenic forms of Vascular Endothelial Growth Factors/receptors was the same in all BL cell-lines tested. The EBV+ cell-lines massively disseminated via the lymphatics and completely occluded them.

Conclusions

Our data suggest that the EBV+ cells attract pro-angiogenic leukocytes, which then induce secondary tumor-stroma interactions contributing to the progression of BL. We show that the CAM is a highly suitable in vivo model to study the differential behavior of BL cell-lines.

【 授权许可】

   
2012 Becker et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708015210511.pdf 9528KB PDF download
Figure 10. 47KB Image download
Figure 9. 194KB Image download
Figure 8. 182KB Image download
Figure 7. 115KB Image download
Figure 6. 253KB Image download
Figure 5. 159KB Image download
Figure 4. 267KB Image download
Figure 3. 92KB Image download
Figure 2. 42KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, Reiser M, Nickenig C, Clemens M, Peter N, et al.: Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 2008, 9:105-116.
  • [2]Kaiser U, Uebelacker I, Abel U, Birkmann J, Trumper L, Schmalenberg H, Karakas T, Metzner B, Hossfeld DK, Bischoff HG, et al.: Randomized study to evaluate the use of high-dose therapy as part of primary treatment for "aggressive" lymphoma. J Clin Oncol 2002, 20:4413-4419.
  • [3]Wunderlich A, Kloess M, Reiser M, Rudolph C, Truemper L, Bittner S, Schmalenberg H, Schmits R, Pfreundschuh M, Loeffler M: Practicability and acute haematological toxicity of 2- and 3-weekly CHOP and CHOEP chemotherapy for aggressive non-Hodgkin's lymphoma: results from the NHL-B trial of the German High-Grade Non-Hodgkin's Lymphoma Study Group (DSHNHL). Ann Oncol 2003, 14:881-893.
  • [4]Burkitt D: A Sarcoma Involving the jaws in African Children. Br J Surg 1958, 46:218-223.
  • [5]Chene A, Donati D, Orem J, Mbidde ER, Kironde F, Wahlgren M, Bejarano MT: Endemic Burkitt's lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol 2009, 19:411-420.
  • [6]Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R, Kazura JW: Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J Infect Dis 2007, 195:799-808.
  • [7]Bornkamm GW: Epstein-Barr virus and the pathogenesis of Burkitt's lymphoma: more questions than answers. Int J Cancer 2009, 124:1745-1755.
  • [8]Macor P, Secco E, Zorzet S, Tripodo C, Celeghini C, Tedesco F: An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies. Curr Pharm Des 2008, 14:2023-2039.
  • [9]Mironov VA, Gusev SA, Baradi AF: Mesothelial stomata overlying omental milky spots: scanning electron microscopic study. Cell Tissue Res 1979, 201:327-330.
  • [10]Wang ZBML, LJ C: Recent advances in the research of lymphatic stomata. Anat Rec (Hoboken) 2007, 293:754-761.
  • [11]Pals ST, de Gorter DJ, Spaargaren M: Lymphoma dissemination: the other face of lymphocyte homing. Blood 2007, 110:3102-3111.
  • [12]Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J: Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997, 150:815-821.
  • [13]Roorda BD, Ter Elst A, Scherpen FJ, Meeuwsen-de Boer TG, Kamps WA, de Bont ES: VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms. Eur J Cancer 2010, 46:974-982.
  • [14]Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998, 95:548-553.
  • [15]Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K: Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276:1423-1425.
  • [16]Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J: VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 1997, 188:96-109.
  • [17]Tammela T, Alitalo K: Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010, 140:460-476.
  • [18]Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, et al.: Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 2009, 15:1023-1030.
  • [19]Pavlakovic H, Becker J, Albuquerque R, Wilting J, Ambati J: Soluble VEGFR-2: an antilymphangiogenic variant of VEGF receptors. Ann N Y Acad Sci 2010, 1207(Suppl 1):E7-15.
  • [20]Ganjoo KN, Moore AM, Orazi A, Sen JA, Johnson CS, An CS: The importance of angiogenesis markers in the outcome of patients with diffuse large B cell lymphoma: a retrospective study of 97 patients. J Cancer Res Clin Oncol 2008, 134:381-387.
  • [21]Jorgensen JM, Sorensen FB, Bendix K, Nielsen JL, Funder A, Karkkainen MJ, Tainola T, Sorensen AB, Pedersen FS, D'Amore F: Expression level, tissue distribution pattern, and prognostic impact of vascular endothelial growth factors VEGF and VEGF-C and their receptors Flt-1, KDR, and Flt-4 in different subtypes of non-Hodgkin lymphomas. Leuk Lymphoma 2009, 50:1647-1660.
  • [22]Kadowaki I, Ichinohasama R, Harigae H, Ishizawa K, Okitsu Y, Kameoka J, Sasaki T: Accelerated lymphangiogenesis in malignant lymphoma: possible role of VEGF-A and VEGF-C. Br J Haematol 2005, 130:869-877.
  • [23]Pazgal I, Boycov O, Shpilberg O, Okon E, Bairey O: Expression of VEGF-C, VEGF-D and their receptor VEGFR-3 in diffuse large B-cell lymphomas. Leuk Lymphoma 2007, 48:2213-2220.
  • [24]Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K, von Euler G, Eriksson U, Alitalo K, Joensuu H: Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998, 153:103-108.
  • [25]Wroel T, Mazur G, Dziegiel P, Jelen M, Szuba A, Kuliczkowski K, Zabel M: Density of intranodal lymphatics and VEGF-C expression in B-cell lymphoma and reactive lymph nodes. Folia Histochem Cytobiol 2006, 44:43-47.
  • [26]Becker J, Pavlakovic H, Ludewig F, Wilting F, Weich HA, Albuquerque R, Ambati J, Wilting J: Neuroblastoma progression correlates with downregulation of the lymphangiogenesis inhibitor sVEGFR-2. Clin Cancer Res 2010, 16:1431-1441.
  • [27]Wilting J, Birkenhäger R, Eichmann A, Kurz H, Martiny-Baron G, Marme D, McCarthy JE, Christ B, Weich HA: VEGF121induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol 1996, 176:76-85.
  • [28]Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A: Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 2005, 102:1643-1648.
  • [29]Murphy JB, Rous P: The Behavior of Chicken Sarcoma Implanted in the Developing Embryo. J Exp Med 1912, 15:119-132.
  • [30]Weber WT, Mausner R: Migration patterns of avian embryonic bone marrow cells and their differentiation to functional T and B cells. Adv Exp Med Biol 1977, 88:47-59.
  • [31]Szenberg A: Ontogeny of myelopoietic precursor cells in the chicken embryo. Adv Exp Med Biol 1977, 88:3-11.
  • [32]Wong GK, Cavey MJ: Development of the liver in the chicken embryo. II. Erythropoietic and granulopoietic cells. Anat Rec 1993, 235:131-143.
  • [33]Bucy RP, Chen CH, Cooper MD: Ontogeny of T cell receptors in the chicken thymus. J Immunol 1990, 144:1161-1168.
  • [34]Masteller EL, Thompson CB: B cell development in the chicken. Poult Sci 1994, 73:998-1011.
  • [35]Reynaud CA, Imhof BA, Anquez V, Weill JC: Emergence of committed B lymphoid progenitors in the developing chicken embryo. EMBO J 1992, 11:4349-4358.
  • [36]Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, et al.: Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 2011, 30:83-95.
  • [37]Shah KM, Young LS: Epstein-Barr virus and carcinogenesis: beyond Burkitt's lymphoma. Clin Microbiol Infect 2009, 15:982-988.
  • [38]Klein G, Klein E, Kashuba E: Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010, 396:67-73.
  • [39]Baker PS, Gold KG, Lane KA, Bilyk JR, Katowitz JA: Orbital burkitt lymphoma in immunocompetent patients: a report of 3 cases and a review of the literature. Ophthal Plast Reconstr Surg 2009, 25:464-468.
  • [40]Papoutsi M, Siemeister G, Weindel K, Tomarev SI, Kurz H, Schachtele C, Martiny-Baron G, Christ B, Marme D, Wilting J: Active interaction of human A375 melanoma cells with the lymphatics in vivo. Histochem Cell Biol 2000, 114:373-385.
  • [41]Wilting J, Becker J, Buttler K, Weich HA: Lymphatics and inflammation. Curr Med Chem 2009, 16:4581-4592.
  • [42]Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M, Tesch H: Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995, 7:1-7.
  • [43]Vockerodt M, Tesch H, Kube D: Epstein-Barr virus latent membrane protein-1 activates CD25 expression in lymphoma cells involving the NFkappaB pathway. Genes Immun 2001, 2:433-441.
  • [44]McNagny KM, Pettersson I, Rossi F, Flamme I, Shevchenko A, Mann M, Graf T: Thrombomucin, a novel cell surface protein that defines thrombocytes and multipotent hematopoietic progenitors. J Cell Biol 1997, 138:1395-1407.
  • [45]Sela S, Itin A, Natanson-Yaron S, Greenfield C, Goldman-Wohl D, Yagel S, Keshet E: A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res 2008, 102:1566-1574.
  文献评价指标  
  下载次数:233次 浏览次数:12次