Clinical Sarcoma Research | |
The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease | |
Arjan C Lankester4  Pancras CW Hogendoorn5  Jukka Vakkila6  Karl-Ludwig Schaefer1  Uta Dirksen3  Helen J Knowles2  Suvi Savola6  Susy J Santos4  Marco W Schilham4  Dagmar Berghuis4  | |
[1] Institute of Pathology, Heinrich-Heine University, Düsseldorf, Germany;Botnar Research Center, Nuffield Orthopedic Center, University of Oxford, Oxford, United Kingdom;Dept. of Pediatric Hematology and Oncology, University Hospital Muenster, Münster, Germany;Department of Pediatrics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, the Netherlands;Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands;Dept. of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland | |
关键词: Therapy; Prognosis; Metastasis; Hypoxia; Growth signaling; Chemokine; CXCL12 (stromal-cell derived factor-1 (SDF-1)); CXCR4; Ewing sarcoma; | |
Others : 861569 DOI : 10.1186/2045-3329-2-24 |
|
received in 2012-10-16, accepted in 2012-11-24, 发布年份 2012 | |
【 摘 要 】
Background
Chemokine receptor CXCR4, together with its ligand CXCL12, plays critical roles in cancer progression, including growth, metastasis and angiogenesis. Ewing sarcoma is a sarcoma with poor prognosis despite current therapies, particularly for patients with advanced-stage disease. Lungs and bone (marrow), organs of predilection for (primary/metastatic) Ewing sarcoma, represent predominant CXCL12 sources.
Methods
To gain insight into the role of the CXCR4-CXCL12 axis in Ewing sarcoma, CXCR4, CXCL12 and hypoxia-inducible factor-1α protein expression was studied in therapy-naïve and metastatic tumors by immunohistochemistry. CXCR4 function was assessed in vitro, by flow cytometry and proliferation/ cell viability assays, in the presence of recombinant CXCL12 and/or CXCR4-antagonist AMD3100 or under hypoxic conditions.
Results
Whereas CXCR4 was predominantly expressed by tumor cells, CXCL12 was observed in both tumor and stromal areas. Survival analysis revealed an (expression level-dependent) negative impact of CXCR4 expression (p < 0.04). A role for the CXCR4-CXCL12 axis in Ewing sarcoma growth was suggested by our observations that i) CXCR4 expression correlated positively with tumor volume at diagnosis (p = 0.013), ii) CXCL12 was present within the microenvironment of virtually all cases, iii) CXCL12 induced proliferation of CXCR4-positive Ewing sarcoma cell lines, which could be abrogated by AMD3100. CXCR4 expression was not correlated with occurrence of metastatic disease. Also, therapy-naïve tumors demonstrated higher CXCR4 expression as compared to metastases (p = 0.027). Evaluation of in vivo hypoxia-inducible factor-1α expression and culture of cells under hypoxic conditions revealed no role for hypoxia in CXCR4 expression.
Conclusions
Together, our results imply a crucial role for the CXCR4-CXCL12 axis in auto- and/or paracrine growth stimulation. Integration of CXCR4-targeting strategies into first- and/or second-line treatment regimens may represent a promising treatment option for Ewing sarcoma.
【 授权许可】
2012 Berghuis et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725002427173.pdf | 1025KB | download | |
62KB | Image | download | |
51KB | Image | download | |
133KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Balkwill F: Cancer and the chemokine network. Nat Rev Cancer 2004, 4:540-550.
- [2]Burger JA, Kipps TJ: CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107:1761-1767.
- [3]Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003, 198:1391-1402.
- [4]Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004, 10:858-864.
- [5]Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, Mantovani A, Allavena P: Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 2004, 64:8420-8427.
- [6]Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A: Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410:50-56.
- [7]Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005, 121:335-348.
- [8]Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK: CXCL12 (SDF1-α) - CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 2011, 17:2074-2080.
- [9]Hotte SJ, Hirte HW, Moretto P, Iacobucci A, Wong D, Korz W, Miller WH: Final results of a Phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers. Eur J Cancer Suppl 2008, 6:127.
- [10]Ushigome S, Machinami R, Sorensen PH: Ewing Sarcoma / Primitive Neuroectodermal Tumour. In World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft tissue and Bone. Edited by Fletcher CDM, Unni KK, Mertens F. Lyon: IARC Press; 2002:298-300.
- [11]Riggi N, Cironi L, Suva ML, Stamenkovic I: Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007, 213:4-20.
- [12]Szuhai K, Ijszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC: The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 2009, 15:2259-2268.
- [13]Le Deley MC, Delattre O, Schaefer KL, Burchill SA, Koehler G, Hogendoorn PC, Lion T, Poremba C, Marandet J, Ballet S, Pierron G, Brownhill SC, Nesslbock M, Ranft A, Dirksen U, Oberlin O, Lewis IJ, Craft AW, Jurgens H, Kovar H: Impact of EWS-ETS fusion type on disease progression in Ewing's sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 2010, 28:1982-1988.
- [14]van Doorninck JA, Ji L, Schaub B, Shimada H, Wing MR, Krailo MD, Lessnick SL, Marina N, Triche TJ, Sposto R, Womer RB, Lawlor ER: Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 2010, 28:1989-1994.
- [15]Bennani-Baiti IM, Cooper A, Lawlor ER, Kauer M, Ban J, Aryee DN, Kovar H: Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing's sarcoma. Clin Cancer Res 2010, 16:3769-3778.
- [16]Reddy K, Zhou Z, Jia SF, Lee TH, Morales-Arias J, Cao Y, Kleinerman ES: Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing's sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer 2008, 123:831-837.
- [17]Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, Mackintosh C, de Alava E, Myklebost O, Kresse SH, Meza-Zepeda LA, Serra M, Cleton-Jansen AM, Hogendoorn PC, Buerger H, Aigner T, Gabbert HE, Poremba C: Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 2010, 49:40-51.
- [18]Knowles HJ, Schaefer KL, Dirksen U, Athanasou NA: Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of hypoxia-inducible factor. BMC Cancer 2010, 10:372-381. BioMed Central Full Text
- [19]de Hooge ASK, Berghuis D, Santos SJ, Mooiman E, Romeo S, Kummer JA, Egeler RM, van Tol MJ, Melief CJ, Hogendoorn PCW, Lankester AC: Expression of cellular FLICE inhibitory protein, caspase-8, and protease inhibitor-9 in Ewing sarcoma and implications for susceptibility to cytotoxic pathways. Clin Cancer Res 2007, 13:206-214.
- [20]Aryee DN, Niedan S, Kauer M, Schwentner R, Bennani-Baiti IM, Ban J, Muehlbacher K, Kreppel M, Walker RL, Meltzer P, Poremba C, Kofler R, Kovar H: Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the malignant properties of Ewing's sarcoma cells in vitro. Cancer Res 2010, 70:4015-4023.
- [21]Scotton CJ, Wilson JL, Scott K, Stamp G, Wilbanks GD, Fricker S, Bridger G, Balkwill FR: Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 2002, 62:5930-5938.
- [22]Kijima T, Maulik G, Ma PC, Tibaldi EV, Turner RE, Rollins B, Sattler M, Johnson BE, Salgia R: Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 2002, 62:6304-6311.
- [23]Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003, 89:462-473.
- [24]Berghuis D, Santos SJ, Baelde HJ, Taminiau AH, Egeler RM, Schilham MW, Hogendoorn PC, Lankester AC: Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte infiltration and affect tumour progression. J Pathol 2011, 223:347-357.
- [25]Wang L, Wang Z, Yang B, Yang Q, Wang L, Sun Y: CXCR4 nuclear localization follows binding of its ligand SDF-1 and occurs in metastatic but not primary renal cell carcinoma. Oncol Rep 2009, 22:1333-1339.
- [26]Wang SC, Lin JK, Wang HS, Yang SH, Li AF, Chang SC: Nuclear expression of CXCR4 is associated with advanced colorectal cancer. Int J Colorectal Dis 2010, 25:1185-1191.
- [27]Namlos HM, Kresse SH, Muller CR, Henriksen J, Holdhus R, Saeter G, Bruland OS, Bjerkehagen B, Steen VM, Myklebost O: Global gene expression profiling of human osteosarcomas reveals metastasis-associated chemokine pattern. Sarcoma 2012, 2012:639038.
- [28]Shim H, Lau SK, Devi S, Yoon Y, Cho HT, Liang Z: Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 2006, 346:252-258.
- [29]Baumhoer D, Smida J, Zillmer S, Rosemann M, Atkinson MJ, Nelson PJ, Jundt G, von Luettichau I, Nathrath M: Strong expression of CXCL12 is associated with a favorable outcome in osteosarcoma. Mod Pathol 2012, 25:522-528.
- [30]van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, Tran MG, Sciot R, Hauben E, Hogendoorn PC, Delattre O, Maxwell PH, Hendrix MJ, Griffioen AW: Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 2005, 65:11520-11528.
- [31]Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W: Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003, 425:307-311.
- [32]Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006, 203:2201-2213.
- [33]Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, Kucia M, Ratajczak MZ: Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 2010, 127:2554-2568.