期刊论文详细信息
Cell & Bioscience
Functional Impact of RNA editing and ADARs on regulation of gene expression: perspectives from deep sequencing studies
Bertrand Chin-Ming Tan3  Kai-Ping Chang4  Scott C Schuyler1  Yi-Tung Chen2  Chung-Pei Ma2  Hsuan Liu3 
[1] Department of Biomedical Sciences, College of Medicine, Tao-Yuan, Taiwan;Graduate Institute of Biomedical Sciences, Tao-Yuan, Taiwan;Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan;Department of Otolaryngology, Chang Gung Memorial Hospital at Lin-Kuo, Tao-Yuan, Taiwan
关键词: Transcriptional regulation;    Small RNA-seq;    RNA editing;    RNA-seq;    Next generation sequencing (NGS);    MicroRNA;    Gene regulation;    Alternative splicing;    ADAR;   
Others  :  1149438
DOI  :  10.1186/2045-3701-4-44
 received in 2014-05-13, accepted in 2014-07-14,  发布年份 2014
PDF
【 摘 要 】

Cells regulate gene expression at multiple levels leading to a balance between robustness and complexity within their proteome. One core molecular step contributing to this important balance during metazoan gene expression is RNA editing, such as the co-transcriptional recoding of RNA transcripts catalyzed by the adenosine deaminse acting on RNA (ADAR) family of enzymes. Understanding of the adenosine-to-inosine RNA editing process has been broadened considerably by the next generation sequencing (NGS) technology, which allows for in-depth demarcation of an RNA editome at nucleotide resolution. However, critical issues remain unresolved with regard to how RNA editing cooperates with other transcript-associated events to underpin regulated gene expression. Here we review the growing body of evidence, provided by recent NGS-based studies, that links RNA editing to other mechanisms of post-transcriptional RNA processing and gene expression regulation including alternative splicing, transcript stability and localization, and the biogenesis and function of microRNAs (miRNAs). We also discuss the possibility that systematic integration of NGS data may be employed to establish the rules of an “RNA editing code”, which may give us new insights into the functional consequences of RNA editing.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405064502797.pdf 765KB PDF download
Figure 1. 144KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Hundley HA, Bass BL: ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 2010, 35:377-383.
  • [2]Nishikura K: Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010, 79:321-349.
  • [3]Farajollahi S, Maas S: Molecular diversity through RNA editing: a balancing act. Trends Genet 2010, 26:221-230.
  • [4]Jepson JE, Reenan RA: RNA editing in regulating gene expression in the brain. Biochim Biophys Acta 2008, 1779:459-470.
  • [5]Osenberg S, Paz Yaacov N, Safran M, Moshkovitz S, Shtrichman R, Sherf O, Jacob-Hirsch J, Keshet G, Amariglio N, Itskovitz-Eldor J, Rechavi G: Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One 2010, 5:e11173.
  • [6]Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G: Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A 2010, 107:12174-12179.
  • [7]Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K: A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 2000, 6:755-767.
  • [8]Valente L, Nishikura K: RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J Biol Chem 2007, 282:16054-16061.
  • [9]Lehmann KA, Bass BL: The importance of internal loops within RNA substrates of ADAR1. J Mol Biol 1999, 291:1-13.
  • [10]Wang Q, O’Brien PJ, Chen CX, Cho DS, Murray JM, Nishikura K: Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem 2000, 74:1290-1300.
  • [11]Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH: Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994, 266:1709-1713.
  • [12]Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, Barbash ZS, Adamsky K, Safran M, Hirschberg A, Kruspsky M, Ben-Dov I, Cazacu S, Mikkelsen T, Brodie C, Eisenberg E, Rechavi G: Altered adenosine-to-inosine RNA editing in human cancer. Genome Res 2007, 17:1586-1595.
  • [13]Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A: Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 2004, 14:1719-1725.
  • [14]Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, Tomita Y: Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 2003, 73:693-699.
  • [15]Kwak S, Kawahara Y: Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 2005, 83:110-120.
  • [16]Schmauss C: Regulation of serotonin 2C receptor pre-mRNA editing by serotonin. Int Rev Neurobiol 2005, 63:83-100.
  • [17]Athanasiadis A, Rich A, Maas S: Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2004, 2:e391.
  • [18]Blow M, Futreal AP, Wooster R, Stratton MR: A survey of RNA editing in human brain. Genome Res 2004, 14:2379-2387.
  • [19]Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF: Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 2004, 22:1001-1005.
  • [20]Ju YS, Kim JI, Kim S, Hong D, Park H, Shin JY, Lee S, Lee WC, Yu SB, Park SS, Seo SH, Yun JY, Kim HJ, Lee DS, Yavartanoo M, Kang HP, Gokcumen O, Govindaraju DR, Jung JH, Chong H, Yang KS, Kim H, Lee C, Seo JS: Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat Genet 2011, 43:745-752.
  • [21]Nekrutenko A, Taylor J: Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev Genet 2012, 13:667-672.
  • [22]Pachter L: A closer look at RNA editing. Nat Biotechnol 2012, 30:246-247.
  • [23]Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, Maia JM, Heinzen EL, Goedert JJ, Goldstein DB: Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol 2010, 11:R57.
  • [24]Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, Amariglio N, Eisenberg E, Rechavi G: Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A 2010, 107:12174-12179.
  • [25]Wahlstedt H, Daniel C, Enstero M, Ohman M: Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 2009, 19:978-986.
  • [26]Li JB, Levanon EY, Yoon JK, Aach J, Xie B, LeProust E, Zhang K, Gao Y, Church GM: Genome-Wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 2009, 324:1210-1213.
  • [27]Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X: Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 2012, 22:142-150.
  • [28]Park E, Williams B, Wold BJ, Mortazavi A: RNA editing in the human ENCODE RNA-seq data. Genome Res 2012, 22:1626-1633.
  • [29]Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O’Connell MA, Li JB: Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 2013, 10:128-132.
  • [30]Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB: Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 2012, 9:579-581.
  • [31]Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y, Zhang W, Liang Y, Hu X, Tan X, Guo J, Dong Z, Bao L, Wang J: Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 2012, 30:253-260.
  • [32]Rueter SM, Dawson TR, Emeson RB: Regulation of alternative splicing by RNA editing. Nature 1999, 399:75-80.
  • [33]Schoft VK, Schopoff S, Jantsch MF: Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic Acids Res 2007, 35:3723-3732.
  • [34]Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G: RNA-editing-mediated exon evolution. Genome Biol 2007, 8:R29.
  • [35]Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, Larizza L: RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 2000, 9:2297-2304.
  • [36]Raitskin O, Cho DS, Sperling J, Nishikura K, Sperling R: RNA editing activity is associated with splicing factors in lnRNP particles: The nuclear pre-mRNA processing machinery. Proc Natl Acad Sci U S A 2001, 98:6571-6576.
  • [37]Solomon O, Oren S, Safran M, Deshet-Unger N, Akiva P, Jacob-Hirsch J, Cesarkas K, Kabesa R, Amariglio N, Unger R, Rechavi G, Eyal E: Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA 2013, 19:591-604.
  • [38]Zhang Z, Carmichael GG: The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 2001, 106:465-475.
  • [39]Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL: Regulating gene expression through RNA nuclear retention. Cell 2005, 123:249-263.
  • [40]Chen LL, DeCerbo JN, Carmichael GG: Alu element-mediated gene silencing. EMBO J 2008, 27:1694-1705.
  • [41]Hundley HA, Krauchuk AA, Bass BL: C. elegans and H. sapiens mRNAs with edited 3’ UTRs are present on polysomes. RNA 2008, 14:2050-2060.
  • [42]Chen L: Characterization and comparison of human nuclear and cytosolic editomes. Proc Natl Acad Sci U S A 2013, 110:E2741-E2747.
  • [43]Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG: ADAR Regulates RNA Editing, Transcript Stability, and Gene Expression. Cell Rep 2013, 5:849-860.
  • [44]Finnegan EF, Pasquinelli AE: MicroRNA biogenesis: Regulating the regulators. Crit Rev Biochem Mol Biol 2013, 48:51-68.
  • [45]Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K: Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 2008, 36:5270-5280.
  • [46]Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, Wooster R, Stratton MR: RNA editing of human microRNAs. Genome Biol 2006, 7:R27.
  • [47]Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP: Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev 2010, 24:992-1009.
  • [48]Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, Gallo A, Shomron N, Eisenberg E: Systematic identification of edited microRNAs in the human brain. Genome Res 2012, 22:1533-1540.
  • [49]Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K: Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007, 315:1137-1140.
  • [50]Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, Wang S: Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 2012, 122:4059-4076.
  • [51]Nachmani D, Zimmermann A, Oiknine Djian E, Weisblum Y, Livneh Y, Le Khanh VT, Galun E, Horejsi V, Isakov O, Shomron N, Wolf DG, Hengel H, Mandelboim O: MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 2014, 10:e1003963.
  • [52]Wang Q, Hui H, Guo Z, Zhang W, Hu Y, He T, Tai Y, Peng P, Wang L: ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA 2013, 19:1525-1536.
  • [53]Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A: The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 1998, 26:3486-3493.
  • [54]Barraud P, Allain FH: ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2012, 353:35-60.
  • [55]Nie Y, Ding L, Kao PN, Braun R, Yang JH: ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 2005, 25:6956-6963.
  • [56]Shimokawa T, Rahman MF, Tostar U, Sonkoly E, Stahle M, Pivarcsi A, Palaniswamy R, Zaphiropoulos PG: RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol 2013, 10:321-333.
  • [57]Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A: Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 2011, 29:436-442.
  • [58]Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S, Spann NJ, Crotti A, Stender J, Ghisletti S, Reichart D, Cheng CS, Luna R, Ludka C, Sasik R, Garcia-Bassets I, Hoffmann A, Subramaniam S, Hardiman G, Rosenfeld MG, Glass CK: Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet 2011, 7:e1002401.
  • [59]Wang T, Cui Y, Jin J, Guo J, Wang G, Yin X, He QY, Zhang G: Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res 2013, 41:4743-4754.
  • [60]Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM, Caceres JF, O’Connell MA: Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 2009, 28:3145-3156.
  • [61]Mizrahi RA, Schirle NT, Beal PA: Potent and selective inhibition of A-to-I RNA editing with 2’-O-methyl/locked nucleic acid-containing antisense oligoribonucleotides. ACS Chem Biol 2013, 8:832-839.
  • [62]Penn AC, Balik A, Greger IH: Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing. Nucleic Acids Res 2013, 41:1113-1123.
  • [63]Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY: Is abundant A-to-I RNA editing primate-specific? Trends Genet 2005, 21:77-81.
  • [64]Dheilly NM, Adema C, Raftos DA, Gourbal B, Grunau C, Du Pasquier L: No more non-model species: The promise of next generation sequencing for comparative immunology. Dev Comp Immunol 2014, 45:56-66.
  • [65]Xu G, Zhang J: Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci U S A 2014, 111:3769-3774.
  • [66]Chen JY, Peng Z, Zhang R, Yang XZ, Tan BC, Fang H, Liu CJ, Shi M, Ye ZQ, Zhang YE, Deng M, Zhang X, Li CY: RNA editome in rhesus macaque shaped by purifying selection. PLoS Genet 2014, 10:e1004274.
  • [67]Zhang SJ, Liu CJ, Yu P, Zhong X, Chen JY, Yang X, Peng J, Yan S, Wang C, Zhu X, Xiong J, Zhang YE, Tan BC, Li CY: Evolutionary interrogation of human biology in well-annotated genomic framework of rhesus macaque. Mol Biol Evol 2014, 31:1309-1324.
  文献评价指标  
  下载次数:16次 浏览次数:12次