期刊论文详细信息
BMC Veterinary Research
Update on epidemiology of canine babesiosis in Southern France
Patrick Mavingui2  Luc Chabanne1  Gilles Bourdoiseau4  Jeanne Chêne4  Claire Valiente Moro3  Magalie René-Martellet1 
[1] INRA, UR 0346 Epidémiologie Animale, Saint-Genès-Champanelle, 63122, France;Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint-Denis, Ste Clotilde, 97490, La Réunion, France;Université de Lyon, Ecologie microbienne, UMR CNRS 5557, USC INRA 1364, VetAgro Sup, Université Lyon 1, Villeurbanne, France;Université de Lyon, VetAgro Sup, Jeune équipe Hémopathogènes vectorisés, Marcy l’Etoile, France
关键词: Epidemiology;    Molecular characterization;    Babesia canis;    Babesia vogeli;    Dermacentor reticulatus;    Rhipicephalus sanguineus;    Canine babesiosis;   
Others  :  1224290
DOI  :  10.1186/s12917-015-0525-3
 received in 2015-03-19, accepted in 2015-08-03,  发布年份 2015
PDF
【 摘 要 】

Background

Canine babesiosis is an emerging or re-emerging disease caused by Babesia and Theileria protozoans, also called piroplasms, transmitted by Ixodid ticks. In Europe, four etiological agents have been identified to date, namely Babesia canis, B. vogeli, B. gibsoni and Theileria annae. France has a high prevalence of canine babesiosis and two tick species, Dermacentor reticulatus and Rhipicephalus sanguineus, are supposed to transmit B. canis and B. vogeli respectively. In southern France, where dog infections with B. vogeli were recently confirmed, no comprehensive study was performed to date on piroplasm species infecting dogs. Thus, a large scale survey involving veterinary clinics, kennels and tick collection from the environment was conducted from 2010 to 2012 in this area.

Results

From 2010 to 2012, 140 dog blood samples and 667 ticks were collected. All blood and a subset of ticks were screened for the presence of piroplasms by PCR amplification of 18S rDNA. B. vogeli, B. canis and T. annae were detected in 13.6, 12.9 and 0.7 % dogs respectively. B. vogeli and B. canis were detected in 10.5 % and in 1.6 % R. sanguineus ticks including 1.3 % co-infections. B. canis was the only species detected in D. reticulatus ticks (9.7 %). B. canis infections were only recorded in the southwest of France whereas B. vogeli was mainly found in the southeast. Finally, a significantly higher prevalence of B. vogeli infection was found in Gard compared to Corsica and Drôme regions, both in dogs (p < 0.002) and R. sanguineus ticks (p < 0.02) although R. sanguineus was the main ticks species removed from dogs in those three areas.

Conclusions

The survey confirmed the circulation of both B. canis and B. vogeli in dogs in southern France with differences in distribution probably linked to the distribution of their respective vectors. It also showed differences in prevalence of B. vogeli infection in areas similar in terms of risk of dogs infestation with R. sanguineus. Further studies focusing on genetic and microbiota of R. sanguineus ticks should be conducted to explore other biological interactions that may explain the differences observed.

【 授权许可】

   
2015 René-Martellet et al.

【 预 览 】
附件列表
Files Size Format View
20150909053927209.pdf 1121KB PDF download
Fig. 3. 89KB Image download
Fig. 2. 52KB Image download
Fig. 1. 60KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Irwin PJ. Canine babesiosis: from molecular taxonomy to control. Parasit Vectors. 2009; 2 Suppl 1:S4. BioMed Central Full Text
  • [2]Irwin PJ. Canine babesiosis. Vet Clin North Am Small Anim Pract. 2010; 40:1141-56.
  • [3]Solano-Gallego L, Baneth G. Babesiosis in dogs and cats-Expanding parasitological and clinical spectra. Vet Parasitol. 2011; 181:48-60.
  • [4]Baneth G, Florin-Christensen M, Cardoso L, Schnittger L. Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit Vectors. 2015; 8:207. BioMed Central Full Text
  • [5]Beugnet F, Marié JL. Emerging arthropod-borne diseases of companion animals in Europe. Vet Parasitol. 2009; 163:298-305.
  • [6]Matijatko V, Torti M, Schetters TP. Canine babesiosis in Europe: how many diseases? Trends Parasitol. 2012; 28:99-105.
  • [7]Beck R, Vojta L, Mrljak V, Marinculic A, Beck A, Zivicnjak T et al.. Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia. Int J Parasitol. 2009; 39:843-8.
  • [8]Fritz D. A PCR study of piroplasms in 166 dogs and 111 horses in France (March 2006 to March 2008). Parasitol Res. 2010; 106:1339-42.
  • [9]Bourdoiseau G. Canine babesiosis in France. Vet Parasitol. 2006; 138:118-25.
  • [10]Martinod S, Gilot B. Epidemiology of canine babesiosis in relation to the activity of Dermacentor reticulatus in southern Jura (France). Exp Appl Acarol. 1991; 11:215-22.
  • [11]René-Martellet M, Chêne J, Chabanne L, Chalvet-Monfray K, Bourdoiseau G. Clinical signs, seasonal occurrence and causative agents of canine babesiosis in France: Results of a multiregional study. Vet Parasitol. 2013; 197:50-8.
  • [12]Lasbleiz M. Situation actuelle de la babésiose canine en France: bilan d’une enquête nationale (in French). Thèse Doct. Vét, Nantes; 2007.
  • [13]Bourdoiseau G, Renard N. Résultats d’une enquête en France sur les cas suspectés ou confirmés de babésiose chez le chien (in French). Nouveau Prat Vét. 2005; 2005:37-42.
  • [14]Halos L, Lebert I, Chao I, Vourc’h G, Ducrot C, Abrial D et al.. Questionnaire-based survey on distribution and clinical incidence of canine babesiosis in France. BMC Vet Res. 2013; 9:41. BioMed Central Full Text
  • [15]René M, Chêne J, Beaufils JP, Valiente Moro C, Bourdoiseau G, Mavingui P et al.. First evidence and molecular characterization of Babesia vogeli in naturally infected dogs and Rhipicephalus sanguineus ticks in southern France. Vet Parasitol. 2012; 187:399-407.
  • [16]Dantas-Torres F, Latrofa MS, Annoscia G, Giannelli A, Parisi A, Otranto D. Morphological and genetic diversity of Rhipicephalus sanguineus sensu lato from the New and Old Worlds. Parasit Vectors. 2013; 6:213. BioMed Central Full Text
  • [17]Szabó MPJ, Mangold AJ, João CF, Bechara GH, Guglielmone AA. Biological and DNA evidence of two dissimilar populations of the Rhipicephalus sanguineus tick group (Acari: Ixodidae) in South America. Vet Parasitol. 2005; 130:131-40.
  • [18]Nava S, Mastropaolo M, Venzal JM, Mangold AJ, Guglielmone AA. Mitochondrial DNA analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) in the Southern Cone of South America. Vet Parasitol. 2012; 190:547-55.
  • [19]Moraes-Filho J, Marcili A, Nieri-Bastos FA, Richtzenhain LJ, Labruna MB. Genetic analysis of ticks belonging to the Rhipicephalus sanguineus group in Latin America. Acta Trop. 2011; 117:51-5.
  • [20]Estrada-Peña A, Bouattour A, Camicas JL, Walker AR. Ticks of Domestic Animals in the Mediterranean Region: A Guide to Identification of Species. University of Zaragoza, Zaragoza; 2004.
  • [21]Pérez-Eid C. Les Tiques. Identification, Biologie, Importance Médicale et Vétérinaire. Editions TEC&DOC, Paris, Editions Médicales Internationales, Cachan; 2007.
  • [22]Jefferies R, Ryan UM, Irwin PJ. PCR-RFLP for the detection and differentiation of the canine piroplasm species and its use with filter paper-based technologies. Vet Parasitol. 2007; 144:20-7.
  • [23]Carret C, Walas F, Carcy B, Grande N, Précigout É, Moubri K et al.. Babesia canis canis, Babesia canis vogeli, Babesia canis rossi: Differentiation of the three subspecies by a restriction fragment length polymorphism analysis on amplified small subunit ribosomal RNA genes. J Euk Microbiol. 1999; 46:298-301.
  • [24]A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
  • [25]Solano-Gallego L, Trotta M, Carli E, Carcy B, Caldin M, Furlanello T. Babesia canis canis and Babesia canis vogeli clinicopathological findings and DNA detection by means of PCR-RFLP in blood from Italian dogs suspected of tick-borne disease. Vet Parasitol. 2008; 157:211-21.
  • [26]Jefferies R, Ryan UM, Muhlnickel CJ, Irwin PJ. Two species of canine Babesia in Australia: detection and characterization by PCR. J Parasitol. 2003; 89:409-12.
  • [27]Mehlhorn H, Schein E. The piroplasms: life cycle and sexual stages. Adv Parasitol. 1984; 23:37-103.
  • [28]Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009; 40:37.
  • [29]Cassini R, Zanutto S, Frangipane di Regalbono A, Gabrielli S, Calderini P, Moretti A et al.. Canine piroplasmosis in Italy: epidemiological aspects in vertebrate and invertebrate hosts. Vet Parasitol. 2009; 165:30-5.
  • [30]Iori A, Gabrielli S, Calderini P, Moretti A, Pietrobelli M, Tampieri MP et al.. Tick reservoirs for piroplasms in central and northern Italy. Vet Parasitol. 2010; 170:291-6.
  • [31]Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part I. Epizootiological aspects. Vet Parasitol. 2003; 113:189-201.
  • [32]Kledmanee K, Suwanpakdee S, Krajangwong S, Chatsiriwech J, Suksai P, Suwannachat P et al.. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood. Southeast Asian J Trop Med Public Health. 2009; 40:35-9.
  • [33]Black WC, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A. 1994; 91:10034-8.
  文献评价指标  
  下载次数:85次 浏览次数:21次