期刊论文详细信息
Journal of Environmental Health Science Engineering
Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process
Mahmood Alimohammadi1  Ramin Nabizadeh2  Kamyar Yaghmaeian4  Amir Hossein Mahvi4  Simin Nasseri3  Gholam Hossein Safari1 
[1] Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran;Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran;Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran;Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
关键词: Optimization;    Central composite design;    Response surface methodology;    Persulfate;    Tetracycline degradation;   
Others  :  1230784
DOI  :  10.1186/s40201-015-0234-7
 received in 2015-05-30, accepted in 2015-10-19,  发布年份 2015
PDF
【 摘 要 】

Background

In this study, a central composite design (CCD) was used for modeling and optimizing the operation parameters such as pH, initial tetracycline and persulfate concentration and reaction time on the tetracycline degradation using sono-activated persulfate process. The effect of temperature, degradation kinetics and mineralization, were also investigated.

Results

The results from CCD indicated that a quadratic model was appropriate to fit the experimental data (p < 0.0001) and maximum degradation of 95.01 % was predicted at pH = 10, persulfate concentration = 4 mM, initial tetracycline concentration = 30.05 mg/L, and reaction time = 119.99 min. Analysis of response surface plots revealed a significant positive effect of pH, persulfate concentration and reaction time, a negative effect of tetracycline concentration. The degradation process followed the pseudo-first-order kinetic. The activation energy value of 32.01 kJ/mol was obtained for US/S 2 O 82-process. Under the optimum condition, the removal efficiency of COD and TOC reached to 72.8 % and 59.7 %, respectively. The changes of UV–Vis spectra during the process was investigated. The possible degradation pathway of tetracycline based on loses of N-methyl, hydroxyl, and amino groups was proposed.

Conclusions

This study indicated that sono-activated persulfate process was found to be a promising method for the degradation of tetracycline.

【 授权许可】

   
2015 Safari et al.

【 预 览 】
附件列表
Files Size Format View
20151107090209915.pdf 2136KB PDF download
Fig 12. 15KB Image download
Fig 11. 32KB Image download
Fig 10. 49KB Image download
Fig 9. 25KB Image download
Fig 8. 16KB Image download
Fig 7. 58KB Image download
Fig 6. 127KB Image download
Fig 5. 19KB Image download
Fig 4. 15KB Image download
Fig 3. 32KB Image download
Fig 2. 61KB Image download
Fig 1. 26KB Image download
【 图 表 】

Fig 1.

Fig 2.

Fig 3.

Fig 4.

Fig 5.

Fig 6.

Fig 7.

Fig 8.

Fig 9.

Fig 10.

Fig 11.

Fig 12.

【 参考文献 】
  • [1]Javid A, Nasseri S, Mesdaghinia A, Mahvi AH, Alimohammadi M, Aghdam RM, Rastkari N. Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO 2 nanofibers. J Environ Health Sci Eng. 2013; 11:24. BioMed Central Full Text
  • [2]Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem Lett. 2013; 11:209-227.
  • [3]Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z. Sorption and desorption of tetracycline on layered manganese dioxide birnessite. Int J Environ Sci Technol. 2015; 12:1695-1704.
  • [4]Lindsey ME, Meyer M, Thurman E. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography mass spectrometry. Anal Chem. 2001; 73:4640-4646.
  • [5]Alavi N, Babaei AA, Shirmardi M, Naimabadi A, Goudarzi G. Assessment of oxytetracycline and tetracycline antibiotics in manure samples in different cities of Khuzestan Province. Iran Environ Sci Pollut Res. 2015;1–7.
  • [6]Zhu J, Snow DD, Cassada DA, Monson SJ, Spalding RF. Analysis of oxytetracycline, tetracycline and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2001; 928:177-186.
  • [7]Guler UA, Sarioglu M. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J Environ Health Sci Eng. 2014; 12:1. BioMed Central Full Text
  • [8]Reyes C, Fernandez J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla MD. Degradation and inactivation of tetracycline by TiO 2 photocatalysis. J Photochem Photobiol A. 2006; 184:141-146.
  • [9]Spongberg AL, Witter JD. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci total environ. 2008; 397:148-157.
  • [10]Karthikeyan KG, Michael TM. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci total environ. 2006; 361:196-207.
  • [11]Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Eealth. 2011; 214:442-448.
  • [12]Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices-a review. J Environ Manag. 2011; 92:2304-2347.
  • [13]Choi KJ, Kim SG, Kim SH. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008; 151:38-43.
  • [14]Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol. 2014; 12:603-616.
  • [15]Kakavandi B, Takdastan A, Jaafarzadeh N, Azizi M, Mirzaei A, Azari A. Application of Fe 3 O 4 @C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. J Photochem Photobio A Chem. 2015; 2016(314):178-188.
  • [16]Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol. 2010; 40:55-91.
  • [17]Li SX, Wei D, Mak NK, Cai ZW, Xu XR, Li HB, Jiang Y. Degradation of diphenylamine by persulfate: performance optimization, kinetics and mechanism. J Hazard Mater. 2009; 164:26-31.
  • [18]Adewuyi YG, Owusu SO. Ultrasound-induced aqueous removal of nitric oxide from flue gases: effects of sulfur dioxide, chloride, and chemical oxidant. J Phys Chem A. 2006; 110:11098-11107.
  • [19]Weng CH, Tao H. Highly efficient persulfate oxidation process activated with Fe0 aggregate for decolorization of reactive azo dye Remazol Golden Yellow. Arabian J Chem. 2015; doi.org/10.1016/j.arabjc.2015.05.012.
  • [20]Fang JY, Shang C. Bromate formation from bromide oxidation by the UV/persulfate process. Environ Sci Technol. 2012; 46:8976-8983.
  • [21]Johnson RL, Tratnyek PG, Johnson ROB. Persulfate persistence under thermal activation conditions. Environ Sci Technol. 2008; 42:9350-9356.
  • [22]Mora VC, Rosso JA, Le C, Roux G, Roux GC, Martire DO, Gonzalez MC. Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere. 2009; 75:1405-1409.
  • [23]Asgari G, Seidmohammadi AM, Chavoshani A. Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H 2 O 2 : a comparative kinetic study. J Environ Health Sci Eng. 2014; 12:94. BioMed Central Full Text
  • [24]Chen WS, Su YC. Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason Sonochem. 2012; 19:921-927.
  • [25]Furman OS, Teel AL, Watts RJ. Mechanism of base activation of persulfate. Environ Sci Technol. 2010; 44:6423-6428.
  • [26]Yang S, Yang X, Shao X, Niu R, Wang L. Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature. J Hazard Mater. 2011; 86:659-666.
  • [27]Fang G, Gao J, Dionysiou DD, Liu C, Zhou D. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs. Environ Sci Technol. 2013; 47:4605-4611.
  • [28]Liang C, Liang CP, Chen CC. pH dependence of persulfate activation by EDTA/Fe (III) for degradation of trichloroethylene. J Contam Hydrol. 2009; 106:173-182.
  • [29]Liang C, Guo Y, Chien Y, Wu Y. Oxidative degradation of MTBE by pyrite-activated persulfate: proposed reaction kinetics. J Contam Hydrol. 2010; 49:8858-8864.
  • [30]Criquet J, Leitmer NKV. Electron beam irradiation of aqueous solution of persulfate ions. Chem Eng J. 2011; 169:258-262.
  • [31]Ahmad M, Teel AL, Watts RJ. Mechanism of persulfate activation by phenols. Environ Sci Technol. 2013; 47:5864-5871.
  • [32]Xu XR, Li XZ. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol. 2010; 72:105-111.
  • [33]Rivas FJ. Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater. 2006; 138:234-251.
  • [34]Anipsitakis GP, Dionysiou DD. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol. 2004; 38:3705-3712.
  • [35]Zhao J, Zhang Y, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Purif Technol. 2010; 71:302-307.
  • [36]Antoniou MG, Cruz AA, Dionysiou DD. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms. Appl Catal B Environ. 2010; 96:290-298.
  • [37]Lin YT, Liang CJ, Chen GH. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere. 2011; 82:1168-1172.
  • [38]Liang HY, Zhang YQ, Huang SB, Hussain I. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate. Chem Eng J. 2013; 218:384-391.
  • [39]Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng J. 2013; 224:469-474.
  • [40]Ji Y, Dong C, Kong D, Lu J, Zhou Q. Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chem Eng J. 2015; 263:45-54.
  • [41]Zhou D, Chen L, Zhang C, Yu Y, Zhang L. novel photochemical system of ferrous sulfite complex: Kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions. Water Res. 2014; 57:85-97.
  • [42]Li B, Li L, Lin K, Zhang W, Lu S, Luo Q. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason Sonochem. 2013; 20:855-863.
  • [43]Sivakumar R, Muthukumar K. Sonochemical degradation of pharmaceutical wastewater. Clean Soil Air Water. 2011; 39:136-141.
  • [44]Neppolian B, Doronila A, Ashokkumar M. Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 2010; 44:3687-3695.
  • [45]Neppolian B, Jung H, Choi H, Lee JH, Kang JW. Sonolytic degradation of methyl tert-butyl ether: the role of coupled Fenton process and persulphate ion. Water Res. 2002; 36:4699-4708.
  • [46]Son HS, Choi SB, Khan E, Zoh KD. Removal of 1, 4-dioxane from water using sonication: effect of adding oxidants on the degradation kinetics. Water Res. 2006; 40:692-698.
  • [47]Su S, Guo W, Yi C, Leng Y, Ma Z. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irrdidation. Ultrason Sonochem. 2012; 19:469-474.
  • [48]Hou L, Zhang H, Xue X. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Sep Purif Technol. 2012; 84:147-152.
  • [49]Gayathri P, Dorathi RPJ, Palanivelu K. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions. Ultrason Sonochem. 2010; 17:566-571.
  • [50]Kwon M, Kim S, Yoon Y, Jung Y, Hwang TM, Lee J, Kang JW. Comparative evaluation of ibuprofen removal by UV/H 2 O 2 and UV/S 2 O 82− processes for wastewater treatment. Chem Eng J. 2015; 269:379-390.
  • [51]Chen WS, Huang YL. Removal of dinitrotoluenes and trinitrotoluene from industrial wastewater by ultrasound enhanced with titanium dioxide. Ultrason sonochem. 2011; 18:1232-1240.
  • [52]Lin JC, Lo SL, Hu CY, Lee YC, Kuo J. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrason Sonochem. 2014; 22:542-547.
  • [53]Ghafoori S, Mowla A, Jahani R, Mehrvar M, Chan PK. Sonophotolytic degradation of synthetic pharmaceutical wastewater: Statistical experimental design and modeling. J Environ Manage. 2015; 150:128-137.
  • [54]Rezaee R, Maleki A, Jafari A, Mazloomi S, Zandsalimi Y, Mahvi AH. Application of response surface methodology for optimization of natural organic matter degradation by UV/H 2 O 2 advanced oxidation process. J Environ Health Sci Eng. 2014; 12:1. BioMed Central Full Text
  • [55]Montgomery DC. Design and Analysis of Experiments. 6th ed. John Wiley & Sons, New York; 2005.
  • [56]Affam AC, Chaudhuri M. Optimization of Fenton treatment of amoxicillin and cloxacillin antibiotic aqueous solution. Desal Water Treat. 2014; 52:1878-1884.
  • [57]Zuorro A, Fidaleo M, Fidaleo M, Lavecchia R. Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/H 2 O 2 process. J Environ Manage. 2014; 133:302-308.
  • [58]Morshedi A, Akbarian M. Application of response surface methodology: design of experiments and optimization: a mini review. In J Fund Appl Life Sci. 2014; 54:2434-2439.
  • [59]Domınguez JR, Munoz MJ, Palo P, Gonzalez T, Peres JA, Cuerda-Correa EM. Fenton advanced oxidation of emerging pollutants: parabens. Int J Energy Environ Eng. 2014; 5:1-10.
  • [60]Xu M, Du H, Gu X, Lu S, Qiu Z, Sui Q. Generation and intensity of active oxygen species in thermally activated persulfate systems for the degradation of trichloroethylene. R.S.C. Advances. 2014; 76:40511-40517.
  • [61]Hoseini M, Safari GH, Kamani H, Jaafari J, Ghanbarain M, Mahvi AH. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis. Toxicol Environ Chem. 2014; 95:1680-1689.
  • [62]Saeed W. The effectiveness of persulfate in the oxidation of petroleum contaminants in saline environment at elevated groundwater temperature. Waterloo, Ontario, Canada; 2011.
  • [63]Zhao D, Liao X, Xiulan Y, Huling SG, Chai T, Huan T. Effect and mechanism of persulfate activated by different methods for PAHs removal in Soi. J. Hazard. Mater. 2013; 254:228-235.
  • [64]Guan YH, Ma J, Li XC, Fang JY, Chen LW. Effect of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 2011; 45:9308-9314.
  • [65]Liang C, Su HW. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009; 48:5558-5562.
  • [66]Ji YF, Ferronato C, Salvador A, Yang X, Chovelon JM. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ. 2014; 472:800-808.
  • [67]Jiao S, Zheng S, Yin D, Wang L, Chen L. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 2008; 73:377-382.
  • [68]Shaojun JIAO, Zheng S, Daqiang YIN, Lianhong WANG, Liangyan CHEN. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J Environ Sci. 2008; 20:806-813.
  • [69]Wang Y, Zhang H, Zhang J, Lu C, Huang Q, Wu J, Liu F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. J Hazard Mater. 2011; 192:35-43.
  • [70]Zhu XD, Wang YJ, Sun RJ, Zhou DM. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO 2. Chemosphere. 2013; 92:925-932.
  • [71]Dalmazio I, Almeida MO, Augusti R. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. J Am Soc Mass Spectrom. 2007; 18:679-687.
  • [72]Ma Y, Gao N, Li C. Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate. Environ Eng Sci. 2012; 29:357-362.
  • [73]Addamo M, Augugliaro V, Di Paola A, Garcia-Lopez E, Loddo V, Marci G, Palmisano L. Removal of drugs in aqueous systems by photoassisted degradation. J Appl Electrochem. 2005; 35:765-774.
  • [74]Seid Mohammadi A, Asgari G, Almasi H. Removal of 2,4 Di-Chlorophenol Using Persulfate Activated with Ultrasound from Aqueous Solutions. J Environ Eng. 2014; 4:260-68.
  • [75]Wang X, Wang L, Li J, Qiu J, Cai C, Zhang H. Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Sep Pur Technol. 2014; 122:41-46.
  文献评价指标  
  下载次数:172次 浏览次数:35次