| EPMA Journal | |
| Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? | |
| Friedemann Paul5  Michael Boschmann1  Erich E Wanker2  Urs Ruegg6  Mario Lorenz3  Silvia Mandel4  Anja Mähler5  | |
| [1] Experimental and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, D-13125, Germany;Department of Proteomics and Molecular Mechanisms of Neurodegenerative Diseases, Max Delbrueck Center for Molecular Medicine, Berlin, D-13125, Germany;Medizinische Klinik für Kardiologie und Angiologie, Charité University Medicine Berlin, Campus Mitte, Berlin, D-10117, Germany;Department of Molecular Pharmacology, Faculty of Medicine, Eve Topf Center of Excellence for Neurodegenerative Diseases Research and Department of Molecular Pharmacology, Faculty of Medicine, Technion, Haifa, 31905, Israel;NeuroCure Clinical Research Center, Charité University Medicine, Berlin, D-10117, Germany;Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, Geneva, CH-1211, Switzerland | |
| 关键词: Tailored therapy; Epigallocatechin-3-gallate; Green tea; Targeted prevention; Predictive and personalised medicine; Neurological diseases; | |
| Others : 801868 DOI : 10.1186/1878-5085-4-5 |
|
| received in 2012-12-20, accepted in 2013-01-25, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations.
【 授权许可】
2013 Mähler et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708013348399.pdf | 686KB | ||
| Figure 2. | 65KB | Image | |
| Figure 1. | 75KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Golubnitschaja O, Costigliola V, EPMA: General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J 2012, 3:14.
- [2]Uttara B, Singh AV, Zamboni P, Mahajan RT: Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009, 7:65-74.
- [3]Rose RC, Bode AM: Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 1993, 7:1135-1142.
- [4]Letelier ME, Sanchez-Jofre S, Peredo-Silva L, Cortes-Troncoso J, Aracena-Parks P: Mechanisms underlying iron and copper ions toxicity in biological systems: pro-oxidant activity and protein-binding effects. Chem Biol Interact 2010, 188:220-227.
- [5]Graham HN: Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992, 21:334-350.
- [6]Sang S, Lambert JD, Ho CT, Yang CS: The chemistry and biotransformation of tea constituents. Pharmacol Res 2011, 64:87-99.
- [7]Balentine DA, Wiseman SA, Bouwens LC: The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 1997, 37:693-704.
- [8]Mandel SA, Youdim MB: In the rush for green gold: can green tea delay age-progressive brain neurodegeneration? Recent Pat CNS Drug Discov 2012, 7:205-217.
- [9]Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F: Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 2004, 173:5794-5800.
- [10]Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F: Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PLoS One 2011, 6:e25456.
- [11]Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D: Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. Am J Pathol 2012, 180:221-234.
- [12]Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH: The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001, 70:603-614.
- [13]Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J: Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005, 25:8807-8814.
- [14]Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT: Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009, 139:1987-1993.
- [15]Kim CY, Lee C, Park GH, Jang JH: Neuroprotective effect of epigallocatechin-3-gallate against beta-amyloid-induced oxidative and nitrosative cell death via augmentation of antioxidant defense capacity. Arch Pharm Res 2009, 32:869-881.
- [16]Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE: EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 2010, 107:7710-7715.
- [17]Li R, Huang YG, Fang D, Le WD: (−)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 2004, 78:723-731.
- [18]Chan DK, Woo J, Ho SC, Pang CP, Law LK, Ng PW, Hung WT, Kwok T, Hui E, Orr K, Leung MF, Kay R: Genetic and environmental risk factors for Parkinson's disease in a Chinese population. J Neurol Neurosurg Psychiatry 1998, 65:781-784.
- [19]Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD: Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002, 155:732-738.
- [20]Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J: Coffee and tea consumption and the risk of Parkinson's disease. Mov Disord 2007, 22:2242-2248.
- [21]Kandinov B, Giladi N, Korczyn AD: Smoking and tea consumption delay onset of Parkinson's disease. Parkinsonism Relat Disord 2009, 15:41-46.
- [22]Nie G, Cao Y, Zhao B: Protective effects of green tea polyphenols and their major component, (−)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Rep 2002, 7:171-177.
- [23]Ye Q, Ye L, Xu X, Huang B, Zhang X, Zhu Y, Chen X: Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1alpha signaling pathway. BMC Complement Altern Med 2012, 12:82.
- [24]Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S: Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001, 78:1073-1082.
- [25]Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG: Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 2002, 23:367-374.
- [26]Leaver KR, Allbutt HN, Creber NJ, Kassiou M, Henderson JM: Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection. Brain Res Bull 2009, 80:397-402.
- [27]Kim JS, Kim JM, JJ O, Jeon BS: Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Clin Neurosci 2010, 17:1165-1168.
- [28]Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT: Dual beneficial effects of (−)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS One 2010, 5:e11951.
- [29]Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE: Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum Mol Genet 2006, 15:2743-2751.
- [30]Kumar P, Kumar A: Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol 2009, 47:2522-2530.
- [31]Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT: Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 2002, 75:749-753.
- [32]Dorchies OM, Wagner S, Vuadens O, Waldhauser K, Buetler TM, Kucera P, Ruegg UT: Green tea extract and its major polyphenol (−)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 2006, 290:C616-C625.
- [33]Nakae Y, Hirasaka K, Goto J, Nikawa T, Shono M, Yoshida M, Stoward PJ: Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 2008, 129:489-501.
- [34]Dorchies OM, Wagner S, Buetler TM, Ruegg UT: Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (−)-epigallocatechin gallate. Biofactors 2009, 35:279-294.
- [35]Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, Talmadge RJ, Grange RW: Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol 2008, 105:923-932.
- [36]Evans NP, Call JA, Bassaganya-Riera J, Robertson JL, Grange RW: Green tea extract decreases muscle pathology and NF-kappaB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 2010, 29:391-398.
- [37]Koh SH, Lee SM, Kim HY, Lee KY, Lee YJ, Kim HT, Kim MH, Hwang MS, Song C, Yang KW, Lee KW, Kim SH, Kim OH: The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 2006, 395:103-107.
- [38]Xu Z, Chen S, Li X, Luo G, Li L, Le W: Neuroprotective effects of (−)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 2006, 31:1263-1269.
- [39]Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, Li B, Li C: Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett 2010, 584:2921-2925.
- [40]Lee H, Bae JH, Lee SR: Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res 2004, 77:892-900.
- [41]Lee S, Suh S, Kim S: Protective effects of the green tea polyphenol (−)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 2000, 287:191-194.
- [42]Lee SY, Kim CY, Lee JJ, Jung JG, Lee SR: Effects of delayed administration of (−)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res Bull 2003, 61:399-406.
- [43]Wu KJ, Hsieh MT, Wu CR, Wood WG, Chen YF: Green tea extract ameliorates learning and memory deficits in ischemic rats via its active component polyphenol epigallocatechin-3-gallate by modulation of oxidative stress and neuroinflammation. Evid Based Complement Alternat Med 2012, 201(2):163106.
- [44]Choi YB, Kim YI, Lee KS, Kim BS, Kim DJ: Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res 2004, 1019:47-54.
- [45]Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T: (−)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 2002, 956:319-322.
- [46]Rahman RM, Nair SM, Helps SC, Shaw OM, Sims NR, Rosengren RJ, Appleton I, Appleton I: (−)-Epigallocatechin gallate as an intervention for the acute treatment of cerebral ischemia. Neurosci Lett 2005, 382:227-230.
- [47]Sutherland BA, Shaw OM, Clarkson AN, Jackson DN, Sammut IA, Appleton I: Neuroprotective effects of (−)-epigallocatechin gallate following hypoxia-ischemia-induced brain damage: novel mechanisms of action. FASEB J 2005, 19:258-260.
- [48]Suzuki M, Tabuchi M, Ikeda M, Umegaki K, Tomita T: Protective effects of green tea catechins on cerebral ischemic damage. Med Sci Monit 2004, 10:BR166-BR174.
- [49]Wei IH, Wu YC, Wen CY, Shieh JY: Green tea polyphenol (−)-epigallocatechin gallate attenuates the neuronal NADPH-d/nNOS expression in the nodose ganglion of acute hypoxic rats. Brain Res 2004, 999:73-80.
- [50]Hong JT, Ryu SR, Kim HJ, Lee JK, Lee SH, Kim DB, Yun YP, Ryu JH, Lee BM, Kim PY: Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res Bull 2000, 53:743-749.
- [51]Ding J, Fu G, Zhao Y, Cheng Z, Chen Y, Zhao B, He W, Guo LJ: EGCG ameliorates the suppression of long-term potentiation induced by ischemia at the Schaffer collateral-CA1 synapse in the rat. Cell Mol Neurobiol 2012, 32:267-277.
- [52]Park JW, Jang YH, Kim JM, Lee H, Park WK, Lim MB, Chu YK, Lo EH, Lee SR: Green tea polyphenol (−)-epigallocatechin gallate reduces neuronal cell damage and up-regulation of MMP-9 activity in hippocampal CA1 and CA2 areas following transient global cerebral ischemia. J Neurosci Res 2009, 87:567-575.
- [53]Park JW, Hong JS, Lee KS, Kim HY, Lee JJ, Lee SR: Green tea polyphenol (−)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J Nutr Biochem 2010, 21:1038-1044.
- [54]Arab L, Liu W, Elashoff D: Green and black tea consumption and risk of stroke: a meta-analysis. Stroke 2009, 40:1786-1792.
- [55]Nakagawa K, Miyazawa T: Absorption and distribution of tea catechin, (−)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo) 1997, 43:679-684.
- [56]Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H: Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998, 19:1771-1776.
- [57]Zini A, Del RD, Stewart AJ, Mandrioli J, Merelli E, Sola P, Nichelli P, Serafini M, Brighenti F, Edwards CA, Crozier A: Do flavan-3-ols from green tea reach the human brain? Nutr Neurosci 2006, 9:57-61.
- [58]Wu L, Zhang QL, Zhang XY, Lv C, Li J, Yuan Y, Yin FX: Pharmacokinetics and blood–brain barrier penetration of (+)-catechin and (−)-epicatechin in rats by microdialysis sampling coupled to high-performance liquid chromatography with chemiluminescence detection. J Agric Food Chem 2012, 60:9377-9383.
- [59]Mandel SA, Amit T, Weinreb O, Youdim MB: Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J Alzheimers Dis 2011, 25:187-208.
- [60]Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007, 39:44-84.
- [61]Yin JJ, Fu PP, Lutterodt H, Zhou YT, Antholine WE, Wamer W: Dual role of selected antioxidants found in dietary supplements: crossover between anti- and pro-oxidant activities in the presence of copper. J Agric Food Chem 2012, 60:2554-2561.
- [62]Jomova K, Vondrakova D, Lawson M, Valko M: Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010, 345:91-104.
- [63]Pacher P, Beckman JS, Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007, 87:315-424.
- [64]Stamler JS, Singel DJ, Loscalzo J: Biochemistry of nitric oxide and its redox-activated forms. Science 1992, 258:1898-1902.
- [65]Frei B, Higdon JV: Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 2003, 133:3275S-3284S.
- [66]Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR: Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004, 5:863-873.
- [67]Ho YS, Magnenat JL, Gargano M, Cao J: The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 1998, 106(Suppl 5):1219-1228.
- [68]Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P: Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (−)-epigallocatechin-3-gallate. Int J Dev Neurosci 2008, 26:217-223.
- [69]Lin SM, Wang SW, Ho SC, Tang YL: Protective effect of green tea (−)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 2010, 26:1195-1200.
- [70]Benveniste EN: Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med (Berl) 1997, 75:165-173.
- [71]McCarty MF: Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006, 67:251-269.
- [72]Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC: Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 1996, 72:355-363.
- [73]Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH: Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson's disease. J Neurosci 2001, 21:8447-8455.
- [74]Wu D, Guo Z, Ren Z, Guo W, Meydani SN: Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 2009, 47:636-643.
- [75]Sinnecker T, Mittelstaedt P, Dorr J, Pfueller CF, Harms L, Niendorf T, Paul F, Wuerfel J: Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 2012, 69:739-745.
- [76]Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H: Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128:2705-2712.
- [77]Bock M, Brandt AU, Dorr J, Kraft H, Weinges-Evers N, Gaede G, Pfueller CF, Herges K, Radbruch H, Ohlraun S, Bellmann-Strobl J, Kuchenbecker J, Zipp F, Paul F: Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg 2010, 112:647-652.
- [78]Bock M, Brandt AU, Dorr J, Pfueller CF, Ohlraun S, Zipp F, Paul F: Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Mult Scler 2010, 16:893-896.
- [79]Compston A, Coles A: Multiple sclerosis. Lancet 2008, 372:1502-1517.
- [80]Dorr J, Wernecke KD, Bock M, Gaede G, Wuerfel JT, Pfueller CF, Bellmann-Strobl J, Freing A, Brandt AU, Friedemann P: Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 2011, 6:e18132.
- [81]Dutta R, Trapp BD: Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 2007, 68:S22-S31.
- [82]Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, Frohman EM, Cutter G, Calabresi PA: Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007, 69:1603-1609.
- [83]Oberwahrenbrock T, Schippling S, Ringelstein M, Kaufhold F, Zimmermann H, Keser N, Young KL, Harmel J, Hartung H-P, Martin R, Paul F, Aktas O, Brandt AU: Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012, 201(2):530305.
- [84]Pfueller CF, Brandt AU, Schubert F, Bock M, Walaszek B, Waiczies H, Young KL, Harmel J, Hartung HP, Martin R, Paul F, Aktas O, Brandt AU: Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One 2011, 6:e18019.
- [85]Vogt J, Paul F, Aktas O, Muller-Wielsch K, Dorr J, Dorr S, Bharathi BS, Glumm R, Schmitz C, Steinbusch H, Raine CS, Tsokos M, Nitsch R, Zipp F: Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol 2009, 66:310-322.
- [86]Brandt AU, Oberwahrenbrock T, Ringelstein M, Young KL, Tiede M, Hartung HP, Martin R, Aktas O, Paul F, Schippling S: Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011, 134:e193.
- [87]Zimmermann H, Freing A, Kaufhold F, Gaede G, Bohn E, Bock M, Oberwahrenbrock T, Young KL, Dörr J, Wuerfel JT, Schippling S, Paul F, Brandt AU: Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler 2012.
- [88]Borisow N, Doring A, Pfueller CF, Paul F, Dorr J, Hellwig K: Expert recommendations to personalization of medical approaches in treatment of multiple sclerosis: an overview of family planning and pregnancy. EPMA J 2012, 3:9.
- [89]Handel AE, Jarvis L, McLaughlin R, Fries A, Ebers GC, Ramagopalan SV: The epidemiology of multiple sclerosis in Scotland: inferences from hospital admissions. PLoS One 2011, 6:e14606.
- [90]Simmons RD, Tribe KL, McDonald EA: Living with multiple sclerosis: longitudinal changes in employment and the importance of symptom management. J Neurol 2010, 257:926-936.
- [91]Sundstrom P, Nystrom L: Smoking worsens the prognosis in multiple sclerosis. Mult Scler 2008, 14:1031-1035.
- [92]Hawkes CH: Smoking is a risk factor for multiple sclerosis: a metanalysis. Mult Scler 2007, 13:610-615.
- [93]Doring A, Paul F, Dorr J: Vitamin D and multiple sclerosis: the role for risk of disease and treatment. Nervenarzt 2013, 84(2):173-189.
- [94]D'hooghe MB, Haentjens P, Nagels G, Garmyn M, De KJ: Sunlight exposure and sun sensitivity associated with disability progression in multiple sclerosis. Mult Scler 2012, 18:451-459.
- [95]Munger KL, Ascherio A: Prevention and treatment of MS: studying the effects of vitamin D. Mult Scler 2011, 17:1405-1411.
- [96]Handel AE, Ramagopalan SV: Vitamin D and multiple sclerosis: an interaction between genes and environment. Mult Scler 2012, 18:2-4.
- [97]Goodin DS: The causal cascade to multiple sclerosis: a model for MS pathogenesis. PLoS One 2009, 4:e4565.
- [98]Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV: Smoking and multiple sclerosis: an updated meta-analysis. PLoS One 2011, 6:e16149.
- [99]Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV: An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 2010., 5
- [100]Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J, Hupperts R: Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 2009, 4:e6635.
- [101]Lucas RM, Ponsonby AL, Dear K, Valery PC, Pender MP, Taylor BV, Kilpatrick TJ, Dwyer T, Coulthard A, Chapman C, van der Mei I, Williams D, McMichael AJ: Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology 2011, 76:540-548.
- [102]Otto C, Oltmann A, Stein A, Frenzel K, Schroeter J, Habbel P, Gärtner B, Hofmann J, Ruprecht K: Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology 2011, 76:1316-1321.
- [103]De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MS Genetics C, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, et al.: Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 2009, 41:776-782.
- [104]Finke C, Pech LM, Sommer C, Schlichting J, Stricker S, Endres M, Ostendorf F, Ploner CJ, Brandt AU, Paul F: Dynamics of saccade parameters in multiple sclerosis patients with fatigue. J Neurol 2012, 259:2656-2663.
- [105]Veauthier C, Paul F: Fatigue in multiple sclerosis: which patient should be referred to a sleep specialist? Mult Scler 2012, 18:248-249.
- [106]Veauthier C, Radbruch H, Gaede G, Pfueller CF, Dorr J, Bellmann-Strobl J, Wernecke KD, Zipp F, Paul F, Sieb JP: Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. Mult Scler 2011, 17:613-622.
- [107]Urbanek C, Weinges-Evers N, Bellmann-Strobl J, Bock M, Dorr J, Hahn E, Neuhaus AH, Opgen-Rhein C, Ta TM, Herges K, Pfueller CF, Radbruch H, Wernecke KD, Ohlraun S, Zipp F, Dettling M, Paul F: Attention Network Test reveals alerting network dysfunction in multiple sclerosis. Mult Scler 2010, 16:93-99.
- [108]Weinges-Evers N, Brandt AU, Bock M, Pfueller CF, Dorr J, Bellmann-Strobl J, Scherer P, Urbanek C, Boers C, Ohlraun S, Zipp F, Paul F: Correlation of self-assessed fatigue and alertness in multiple sclerosis. Mult Scler 2010, 16:1134-1140.
- [109]Bates D: Treatment effects of immunomodulatory therapies at different stages of multiple sclerosis in short-term trials. Neurology 2011, 76:S14-S25.
- [110]Wiendl H, Toyka KV, Rieckmann P, Gold R, Hartung HP, Hohlfeld R: Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 2008, 255:1449-1463.
- [111]Jain N, Bhatti MT: Fingolimod-associated macular edema: incidence, detection, and management. Neurology 2012, 78:672-680.
- [112]Turaka K, Bryan JS: Does fingolimod in multiple sclerosis patients cause macular edema? J Neurol 2012, 259:386-388.
- [113]Sorensen PS, Bertolotto A, Edan G, Giovannoni G, Gold R, Havrdova E, Kappos L, Kieseier BC, Montalban X, Olsson T: Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab. Mult Scler 2012, 18:143.
- [114]Castillo-Trivino T, Mowry EM, Gajofatto A, Chabas D, Crabtree-Hartman E, Cree BA, Goodin DS, Green AJ, Okuda DT, Pelletier D, Zamvil SS, Vittinghoff E, Waubant E: Switching multiple sclerosis patients with breakthrough disease to second-line therapy. PLoS One 2011, 6:e16664.
- [115]Hellwig K, Gold R: Progressive multifocal leukoencephalopathy and natalizumab. J Neurol 2011, 258:1920-1928.
- [116]Dinkin M, Paul F: Higher macular volume in patients with MS receiving fingolimod: positive outcome or side effect. Neurology 2012, 80:128-129.
- [117]Faber H, Fischer HJ, Weber F: Prolonged and symptomatic bradycardia following a single dose of fingolimod. Mult Scler 2012, 19:126-128.
- [118]Lindsey J, Haden-Pinneri K, Memon N, Buja L: Sudden unexpected death on fingolimod. Mult Scler 2012, 18:1507-1508.
- [119]Espinosa PS, Berger JR: Delayed fingolimod-associated asystole. Mult Scler 2011, 17:1387-1389.
- [120]Le PE, Leray E, Edan G: Long-term safety profile of mitoxantrone in a French cohort of 802 multiple sclerosis patients: a 5-year prospective study. Mult Scler 2011, 17:867-875.
- [121]Goffette S, Van PV, Vanoverschelde JL, Morandini E, Sindic CJ: Severe delayed heart failure in three multiple sclerosis patients previously treated with mitoxantrone. J Neurol 2005, 252:1217-1222.
- [122]Chanvillard C, Millward JM, Lozano M, Hamann I, Paul F, Zipp F, Dörr J, Infante-Duarte C: Mitoxantrone induces natural killer cell maturation in patients with secondary progressive multiple sclerosis. PLoS One 2012, 7:e39625.
- [123]Stroet A, Hemmelmann C, Starck M, Zettl U, Dorr J, Friedemann P, Flachenecker P, Fleischer V, Zipp F, Nückel H, Kieseier BC, Ziegler A, Gold R, Chan A: Incidence of therapy-related acute leukaemia in mitoxantrone-treated multiple sclerosis patients in Germany. Ther Adv Neurol Disord 2012, 5:75-79.
- [124]Dörr J, Bitsch A, Schmailzl KJ, Chan A, von Ahsen N, Hummel M, Varon R, Lill CM, Vogel HP, Zipp F, Paul F: Severe cardiac failure in a patient with multiple sclerosis following low-dose mitoxantrone treatment. Neurology 2009, 73:991-993.
- [125]Paul F, Dorr J, Wurfel J, Vogel HP, Zipp F: Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2007, 78:198-200.
- [126]Steinman L, Zamvil SS: How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 2006, 60:12-21.
- [127]Mix E, Meyer-Rienecker H, Zettl UK: Animal models of multiple sclerosis for the development and validation of novel therapies - potential and limitations. J Neurol 2008, 255(Suppl 6):7-14.
- [128]Vesterinen HM, Sena ES, Ffrench-Constant C, Williams A, Chandran S, Macleod MR: Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler 2010, 16:1044-1055.
- [129]Baker D, Gerritsen W, Rundle J, Amor S: Critical appraisal of animal models of multiple sclerosis. Mult Scler 2011, 17:647-657.
- [130]Racke MK, Lovett-Racke AE, Karandikar NJ: The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 2010, 74(Suppl 1):S25-S30.
- [131]Stuve O, Kieseier BC, Hemmer B, Hartung HP, Awad A, Frohman EM, Greenberg BM, Racke MK, Zamvil SS, Phillips JT, Gold R, Chan A, Zettl U, Milo R, Marder E, Khan O, Eagar TN: Translational research in neurology and neuroscience 2010: multiple sclerosis. Arch Neurol 2010, 67:1307-1315.
- [132]Comi G, Martinelli V, Rodegher M, Moiola L, Leocani L, Bajenaru O, Carra A, Elovaara I, Fazekas F, Hartung HP, Hillert J, King J, Komoly S, Lubetzki C, Montalban X, Myhr KM, Preziosa P, Ravnborg M, Rieckmann P, Rocca MA, Wynn D, Young C, Filippi M: Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler 2012.
- [133]Giovannoni G, Southam E, Waubant E: Systematic review of disease-modifying therapies to assess unmet needs in multiple sclerosis: tolerability and adherence. Mult Scler 2012, 18:932-946.
- [134]Trojan DA, Arnold D, Collet JP, Shapiro S, Bar-Or A, Robinson A, Le Cruguel JP, Ducruet T, Narayanan S, Arcelin K, Wong AN, Tartaglia MC, Lapierre Y, Caramanos Z, Da Costa D: Fatigue in multiple sclerosis: association with disease-related, behavioural and psychosocial factors. Mult Scler 2007, 13:985-995.
- [135]Doring A, Pfueller CF, Paul F, Dorr J: Exercise in multiple sclerosis – an integral component of disease management. EPMA J 2011, 3:2.
- [136]Andreasen AK, Jakobsen J, Petersen T, Andersen H: Fatigued patients with multiple sclerosis have impaired central muscle activation. Mult Scler 2009, 15:818-827.
- [137]Thielecke F, Rahn G, Bohnke J, Adams F, Birkenfeld AL, Jordan J, Boschmann M: Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study. Eur J Clin Nutr 2010, 64:704-713.
- [138]Kinoshita M, Nakatsuji Y: Where do AQP4 antibodies fit in the pathogenesis of NMO? Mult Scler Int 2012, 201(2):862169.
- [139]Jarius S, Franciotta D, Paul F, Bergamaschi R, Rommer PS, Ruprecht K, Ringelstein M, Aktas O, Kristoferitsch W, Wildemann B: Testing for antibodies to human aquaporin-4 by ELISA: sensitivity, specificity, and direct comparison with immunohistochemistry. J Neurol Sci 2012, 320:32-37.
- [140]Mader S, Lutterotti A, Di PF, Kuenz B, Schanda K, Aboul-Enein F, Khalil M, Storch MK, Jarius S, Kristoferitsch W, Berger T, Reindl M: Patterns of antibody binding to aquaporin-4 isoforms in neuromyelitis optica. PLoS One 2010, 5:e10455.
- [141]Ratelade J, Bennett JL, Verkman AS: Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One 2011, 6:e27412.
- [142]Granieri L, Marnetto F, Valentino P, Frau J, Patanella AK, Nytrova P, Sola P, Capobianco M, Jarius S, Bertolotto A: Evaluation of a multiparametric immunofluorescence assay for standardization of neuromyelitis optica serology. PLoS One 2012, 7:e38896.
- [143]Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, Kleiter I, Kleinschnitz C, Berthele A, Brettschneider J, Hellwig K, Hemmer B, Linker RA, Lauda F, Mayer CA, Tumani H, Melms A, Trebst C, Stangel M, Marziniak M, Hoffmann F, Schippling S, Faiss JH, Neuhaus O, Ettrich B, Zentner C, Guthke K, Hofstadt-van Oy U, Reuss R, Pellkofer H, Ziemann U, Kern P, et al.: Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 2012, 9:14.
- [144]Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS, Reuss R, Probst C, Kristoferitsch W, Wandinger KP, Wildemann B: Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J Neuroinflammation 2010, 7:52.
- [145]Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, Vincent A, Wildemann B: Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 2008, 4:202-214.
- [146]Paul F, Jarius S, Aktas O, Bluthner M, Bauer O, Appelhans H, Franciotta D, Bergamaschi R, Littleton E, Palace J, Seelig HP, Hohlfeld R, Vincent A, Zipp F: Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med 2007, 4:e133.
- [147]Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202:473-477.
- [148]Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG: Revised diagnostic criteria for neuromyelitis optica. Neurology 2006, 66:1485-1489.
- [149]Storoni M, Petzold A, Plant GT: The use of serum glial fibrillary acidic protein measurements in the diagnosis of neuromyelitis optica spectrum optic neuritis. PLoS One 2011, 6:e23489.
- [150]Noval S, Contreras I, Munoz S, Oreja-Guevara C, Manzano B, Rebolleda G: Optical coherence tomography in multiple sclerosis and neuromyelitis optica: an update. Mult Scler Int 2011, 201(1):472790.
- [151]Pfueller CF, Paul F: Imaging the visual pathway in neuromyelitis optica. Mult Scler Int 2011, 201(1):869814.
- [152]Sinnecker T, Dorr J, Pfueller CF, Harms L, Ruprecht K, Jarius S, Brück W, Niendorf T, Wuerfel J, Paul F: Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012, 79:708-714.
- [153]Calabrese M, Oh MS, Favaretto A, Rinaldi F, Poretto V, Alessio S, Lee BC, Yu KH, Ma HI, Perini P, Gallo P: No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 2012, 79:1671-1676.
- [154]Lu Z, Zhang B, Qiu W, Kang Z, Shen L, Long Y, Huang J, Hu X: Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis. PLoS One 2011, 6:e22766.
- [155]Cabrera-Gomez JA, Kister I: Conventional brain MRI in neuromyelitis optica. Eur J Neurol 2012, 19:812-819.
- [156]Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R, Rommer P, Kleiter I, Stich O, Reuss R, Rauer S, Zettl UK, Wandinger KP, Melms A, Aktas O, Kristoferitsch W, Wildemann B: Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 2011, 306:82-90.
- [157]Barnett MH, Prineas JW, Buckland ME, Parratt JD, Pollard JD: Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult Scler 2012, 18:108-112.
- [158]Shimizu Y, Yokoyama K, Misu T, Takahashi T, Fujihara K, Kikuchi S, Itoyama Y, Iwata M: Development of extensive brain lesions following interferon beta therapy in relapsing neuromyelitis optica and longitudinally extensive myelitis. J Neurol 2008, 255:305-307.
- [159]Shimizu J, Hatanaka Y, Hasegawa M, Iwata A, Sugimoto I, Date H, Goto J, Shimizu T, Takatsu M, Sakurai Y, Nakase H, Uesaka Y, Hashida H, Hashimoto K, Komiya T, Tsuji S: IFNbeta-1b may severely exacerbate Japanese optic-spinal MS in neuromyelitis optica spectrum. Neurology 2010, 75:1423-1427.
- [160]Papeix C, Vidal JS, De SJ, Pierrot-Deseilligny C, Tourbah A, Stankoff B, Lebrun C, Moreau T, Vermersch P, Fontaine B, Lyon-Caen O, Gout O: Immunosuppressive therapy is more effective than interferon in neuromyelitis optica. Mult Scler 2007, 13:256-259.
- [161]Palace J, Leite MI, Nairne A, Vincent A: Interferon beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol 2010, 67:1016-1017.
- [162]Kim SH, Kim W, Li XF, Jung IJ, Kim HJ: Does interferon beta treatment exacerbate neuromyelitis optica spectrum disorder? Mult Scler 2012, 18:1480-1483.
- [163]Min JH, Kim BJ, Lee KH: Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler 2012, 18:113-115.
- [164]Jacob A, Hutchinson M, Elsone L, Kelly S, Ali R, Saukans I, Tubridy N, Boggild M: Does natalizumab therapy worsen neuromyelitis optica? Neurology 2012, 79:1065-1066.
- [165]Kleiter I, Hellwig K, Berthele A, Kumpfel T, Linker RA, Hartung HP, Paul F, Aktas O, Neuromyelitis Optica Study Group: Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 2012, 69:239-245.
- [166]Costanzi C, Matiello M, Lucchinetti CF, Weinshenker BG, Pittock SJ, Mandrekar J, Thapa P, McKeon A: Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 2011, 77:659-666.
- [167]Jacob A, Weinshenker BG, Violich I, McLinskey N, Krupp L, Fox RJ, Wingerchuk DM, Boggild M, Constantinescu CS, Miller A, De Angelis T, Matiello M, Cree BA: Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol 2008, 65:1443-1448.
- [168]Jacob A, Matiello M, Weinshenker BG, Wingerchuk DM, Lucchinetti C, Shuster E, Carter J, Keegan BM, Kantarci OH, Pittock SJ: Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol 2009, 66:1128-1133.
- [169]Kim SH, Kim W, Park MS, Sohn EH, Li XF, Kim HJ: Efficacy and safety of mitoxantrone in patients with highly relapsing neuromyelitis optica. Arch Neurol 2011, 68:473-479.
- [170]Greenberg BM, Graves D, Remington G, Hardeman P, Mann M, Karandikar N, Stuve O, Monson N, Frohman E: Rituximab dosing and monitoring strategies in neuromyelitis optica patients: creating strategies for therapeutic success. Mult Scler 2012, 18:1022-1026.
- [171]Bichuetti DB, Lobato de Oliveira EM, Oliveira DM, Amorin de Souza N, Gabbai AA: Neuromyelitis optica treatment: analysis of 36 patients. Arch Neurol 2010, 67:1131-1136.
- [172]Kalluri SR, Rothhammer V, Staszewski O, Srivastava R, Petermann F, Prinz M, Hemmer B, Korn T: Functional characterization of aquaporin-4 specific T cells: towards a model for neuromyelitis optica. PLoS One 2011, 6:e16083.
- [173]Nelson PA, Khodadoust M, Prodhomme T, Spencer C, Patarroyo JC, Varrin-Doyer M, Ho JD, Stroud RM, Zamvil SS: Immunodominant T cell determinants of aquaporin-4, the autoantigen associated with neuromyelitis optica. PLoS One 2010, 5:e15050.
- [174]Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Cree BA, Zamvil SS: Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol 2012, 72:53-64.
- [175]Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, Papadopoulos MC: Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 2012, 71:323-333.
- [176]Herges K, de Jong BA, Kolkowitz I, Dunn C, Mandelbaum G, Ko RM, Maini A, Han MH, Killestein J, Polman C, Goodyear AL, Dunn J, Steinman L, Axtell RC: Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Mult Scler 2012, 18:398-408.
- [177]Abboud PA, Hake PW, Burroughs TJ, Odoms K, O'Connor M, Mangeshkar P, Wong HR, Zingarelli B: Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur J Pharmacol 2008, 579:411-417.
- [178]Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B: Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 2004, 10:55-62.
- [179]Walton NM, Shin R, Tajinda K, Heusner CL, Kogan JH, Miyake S, Chen Q, Tamura K, Matsumoto M: Adult neurogenesis transiently generates oxidative stress. PLoS One 2012, 7:e35264.
- [180]Levites Y, Amit T, Mandel S, Youdim MB: Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 2003, 17:952-954.
- [181]Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O, Mandel S: Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease. J Neurochem 2006, 97:527-536.
- [182]Citron M: Beta-secretase inhibition for the treatment of Alzheimer's disease - promise and challenge. Trends Pharmacol Sci 2004, 25:92-97.
- [183]Behl C: Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 1999, 57:301-323.
- [184]Olanow CW, Tatton WG: Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 1999, 22:123-144.
- [185]Rojanathammanee L, Murphy EJ, Combs CK: Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflammation 2011, 8:44.
- [186]Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M: Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson's disease. PLoS One 2010, 5:e8784.
- [187]Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Fernandez-Montesinos R, Caro M, Lachaud CC, Waudby CA, Delgado M, Dobson CM, Pozo D: Glial innate immunity generated by non-aggregated alpha-synuclein in mouse: differences between wild-type and Parkinson's disease-linked mutants. PLoS One 2010, 5:e13481.
- [188]Pabon MM, Jernberg JN, Morganti J, Contreras J, Hudson CE, Klein RL, Bickford PC: A spirulina-enhanced diet provides neuroprotection in an alpha-synuclein model of Parkinson's disease. PLoS One 2012, 7:e45256.
- [189]Shafer TJ, Atchison WD: Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 1991, 12:473-492.
- [190]Levites Y, Youdim MB, Maor G, Mandel S: Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 2002, 63:21-29.
- [191]Przedborski S, Vila M: The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann N Y Acad Sci 2003, 991:189-198.
- [192]Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG, Yang CS: Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 2003, 133:4172-4177.
- [193]Kim S, Lee MJ, Hong J, Li C, Smith TJ, Yang GY: Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 2000, 37:41-48.
- [194]Pan T, Fei J, Zhou X, Jankovic J, Le W: Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci 2003, 72:1073-1083.
- [195]Zhu BT, Shim JY, Nagai M, Bai HW: Molecular modelling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (−)-epigallocatechin-3-O-gallate. Xenobiotica 2008, 38:130-146.
- [196]Tan LC, Koh WP, Yuan JM, Wang R, Au WL, Tan JH, Tan EK, Yu MC: Differential effects of black versus green tea on risk of Parkinson's disease in the Singapore Chinese Health Study. Am J Epidemiol 2008, 167:553-560.
- [197]Zuccato C, Valenza M, Cattaneo E: Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010, 90:905-981.
- [198]Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay JP, Tranchant C, Broussolle E, Morin F, Bachoud-Lévi AC, Maison P: Neuroendocrine disturbances in Huntington's disease. PLoS One 2009, 4:e4962.
- [199]Mazzone E, Vasco G, Sormani MP, Torrente Y, Berardinelli A, Messina S, D'Amico A, Doglio L, Politano L, Cavallaro F, Frosini S, Bello L, Bonfiglio S, Zucchini E, De Sanctis R, Scutifero M, Bianco F, Rossi F, Motta MC, Sacco A, Donati MA, Mongini T, Pini A, Battini R, Pegoraro E, Pane M, Gasperini S, Previtali S, Napolitano S, Martinelli D, Bruno C, et al.: Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology 2011, 77:250-256.
- [200]Weber MA, Nagel AM, Jurkat-Rott K, Lehmann-Horn F: Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 2011, 77:2017-2024.
- [201]Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group: Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010, 9:77-93.
- [202]Nakae Y, Dorchies OM, Stoward PJ, Zimmermann BF, Ritter C, Ruegg UT: Quantitative evaluation of the beneficial effects in the mdx mouse of epigallocatechin gallate, an antioxidant polyphenol from green tea. Histochem Cell Biol 2012, 137:811-827.
- [203]Rowland LP, Shneider NA: Amyotrophic lateral sclerosis. N Engl J Med 2001, 344:1688-1700.
- [204]Ludolph AC, Brettschneider J, Weishaupt JH: Amyotrophic lateral sclerosis. Curr Opin Neurol 2012, 25:530-535.
- [205]Quinn C, Elman L, McCluskey L, Hoskins K, Karam C, Woo JH, Poptani H, Wang S, Chawla S, Kasner SE, Grossman M: Frontal lobe abnormalities on MRS correlate with poor letter fluency in ALS. Neurology 2012, 79:583-588.
- [206]Raaphorst J, Beeldman E, Schmand B, Berkhout J, Linssen WH, van den Berg LH, Pijnenburg YA, Grupstra HF, Weikamp JG, Schelhaas HJ, Papma JM, van Swieten JC, de Visser M, de Haan RJ: The ALS-FTD-Q: a new screening tool for behavioral disturbances in ALS. Neurology 2012, 79:1377-1383.
- [207]Ellis CM, Suckling J, Amaro E Jr, Bullmore ET, Simmons A, Williams SC, Leigh PN: Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 2001, 57:1571-1578.
- [208]Kwan JY, Jeong SY, Van GP, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK: Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS One 2012, 7:e35241.
- [209]Weis J, Katona I, Muller-Newen G, Sommer C, Necula G, Hendrich C, Ludolph AC, Sperfeld AD: Small-fiber neuropathy in patients with ALS. Neurology 2011, 76:2024-2029.
- [210]Lloyd CM, Richardson MP, Brooks DJ, Al-Chalabi A, Leigh PN: Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain 2000, 123(Pt 11):2289-2296.
- [211]Agosta F, Valsasina P, Riva N, Copetti M, Messina MJ, Prelle A, Comi G, Filippi M: The cortical signature of amyotrophic lateral sclerosis. PLoS One 2012, 7:e42816.
- [212]Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M: Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 2012, 7:e43993.
- [213]Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D, Fenoglio P, Grinberg Y, Isaia G, Calvo A, Gentile S, Bruni AC, St George-Hyslop PH, Scarpini E, Gallone S, Pinessi L, TODEM Study Group: SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 2012, 79:1556-1562.
- [214]Appel SH, Rowland LP: Amyotrophic lateral sclerosis, frontotemporal lobar dementia, and p62: a functional convergence? Neurology 2012, 79:1526-1527.
- [215]Alexianu ME, Kozovska M, Appel SH: Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 2001, 57:1282-1289.
- [216]Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH: Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004, 55:221-235.
- [217]Ince PG, Evans J, Knopp M, Forster G, Hamdalla HH, Wharton SB, Shaw PJ: Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 2003, 60:1252-1258.
- [218]Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ: Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 2012, 7:e39216.
- [219]Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD: Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2002, 52:771-778.
- [220]Donnan GA, Fisher M, Macleod M, Davis SM: Stroke. Lancet 2008, 371:1612-1623.
- [221]Gundimeda U, McNeill TH, Elhiani AA, Schiffman JE, Hinton DR, Gopalakrishna R: Green tea polyphenols precondition against cell death induced by oxygen-glucose deprivation via stimulation of laminin receptor, generation of reactive oxygen species, and activation of protein kinase C{epsilon}. J Biol Chem 2012, 287:34694-34708.
- [222]Wroblewski JT, Danysz W: Modulation of glutamate receptors: molecular mechanisms and functional implications. Annu Rev Pharmacol Toxicol 1989, 29:441-474.
- [223]Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361:31-39.
- [224]Chou CW, Huang WJ, Tien LT, Wang SJ: (−)-Epigallocatechin gallate, the most active polyphenolic catechin in green tea, presynaptically facilitates Ca2+-dependent glutamate release via activation of protein kinase C in rat cerebral cortex. Synapse 2007, 61:889-902.
- [225]Haque AM, Hashimoto M, Katakura M, Tanabe Y, Hara Y, Shido O: Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 2006, 136:1043-1047.
- [226]Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T: (−)-Epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 2011, 13:300-309.
- [227]Sachdeva AK, Kuhad A, Chopra K: Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull 2011, 86:165-172.
- [228]Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I: Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 2006, 83:355-361.
- [229]Wightman EL, Haskell CF, Forster JS, Veasey RC, Kennedy DO: Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol 2012, 27:177-186.
- [230]Harman D: The aging process. Proc Natl Acad Sci U S A 1981, 78:7124-7128.
- [231]Felix MA, Braendle C: The natural history of Caenorhabditis elegans. Curr Biol 2010, 20:R965-R969.
- [232]Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z: Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One 2011, 6:e22354.
- [233]Baran R, Castelblanco L, Tang G, Shapiro I, Goncharov A, Jin Y: Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 2010, 5:e9655.
- [234]Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC: Identification of potential therapeutic drugs for Huntington's disease using Caenorhabditis elegans. PLoS One 2007, 2:e504.
- [235]Brown MK, Evans JL, Luo Y: Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 2006, 85:620-628.
- [236]Zhang L, Jie G, Zhang J, Zhao B: Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med 2009, 46:414-421.
- [237]Abbas S, Wink M: Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 2009, 75:216-221.
- [238]Meng Q, Velalar CN, Ruan R: Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast. Free Radic Biol Med 2008, 44:1032-1041.
- [239]He M, Zhao L, Wei MJ, Yao WF, Zhao HS, Chen FJ: Neuroprotective effects of (−)-epigallocatechin-3-gallate on aging mice induced by d-galactose. Biol Pharm Bull 2009, 32:55-60.
- [240]Srividhya R, Gayathri R, Kalaiselvi P: Impact of epigallo catechin-3-gallate on acetylcholine-acetylcholine esterase cycle in aged rat brain. Neurochem Int 2012, 60:517-522.
- [241]Yoshioka H, Senba Y, Saito K, Kimura T, Hayakawa F: Spin-trapping study on the hydroxyl radical formed from a tea catechin-Cu(II) system. Biosci Biotechnol Biochem 2001, 65:1697-1706.
- [242]Williams SN, Pickwell GV, Quattrochi LC: A combination of tea (Camellia senensis) catechins is required for optimal inhibition of induced CYP1A expression by green tea extract. J Agric Food Chem 2003, 51:6627-6634.
- [243]Sutherland BA, Rahman RM, Appleton I: Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem 2006, 17:291-306.
- [244]Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M: Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 2005, 19:807-809.
- [245]Li GX, Chen YK, Hou Z, Xiao H, Jin H, Lu G, Lee MJ, Liu B, Guan F, Yang Z, Yu A, Yang CS: Pro-oxidative activities and dose–response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: a comparative study in vivo and in vitro. Carcinogenesis 2010, 31:902-910.
- [246]Lambert JD, Lee MJ, Diamond L, Ju J, Hong J, Bose M, Newmark HL, Yang CS: Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 2006, 34:8-11.
- [247]Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caudron AS, Pineau B, Weber P: A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003, 31:88-101.
- [248]Nakagawa K, Okuda S, Miyazawa T: Dose-dependent incorporation of tea catechins, (−)-epigallocatechin-3-gallate and (−)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 1997, 61:1981-1985.
- [249]Pae M, Ren Z, Meydani M, Shang F, Smith D, Meydani SN, Wu D: Dietary supplementation with high dose of epigallocatechin-3-gallate promotes inflammatory response in mice. J Nutr Biochem 2012, 23:526-531.
- [250]Mereles D, Hunstein W: Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 2011, 12:5592-5603.
PDF