期刊论文详细信息
Breast Cancer Research
A different immunologic profile characterizes patients with HER-2-overexpressing and HER-2-negative locally advanced breast cancer: implications for immune-based therapies
Riccardo Dolcetti3  Diana Crivellari1  Andrea Veronesi1  Antonino Carbone4  Tiziana Perin4  Davide Lombardi1  Katy Mastorci3  Renato Talamini2  Elisa Comaro3  Simona Scalone1  Gianmaria Miolo1  Elisa Turchet1  Debora Martorelli3  Elena Muraro3 
[1] Division of Medical Oncology C, Centro di Riferimento Oncologico, IRCCS - National Cancer Institute, via Franco Gallini 2, Aviano (PN), 33081, Italy;Epidemiology and Biostatistics Unit, Centro di Riferimento Oncologico, IRCCS - National Cancer Institute, via Franco Gallini 2, Aviano (PN), 33081, Italy;Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS - National Cancer Institute, via Franco Gallini 2, Aviano (PN), 33081, Italy;Division of Pathology, Centro di Riferimento Oncologico, IRCCS - National Cancer Institute, via Franco Gallini 2, Aviano (PN), 33081, Italy
关键词: tumor-associated antigens;    antitumor immune responses;    trastuzumab;    HER2;    neoadjuvant therapy;    Breast cancer;   
Others  :  799121
DOI  :  10.1186/bcr3060
 received in 2011-08-09, accepted in 2011-11-23,  发布年份 2011
PDF
【 摘 要 】

Introduction

The clinical efficacy of trastuzumab and taxanes is at least partly related to their ability to mediate or promote antitumor immune responses. On these grounds, a careful analysis of basal immune profile may be capital to dissect the heterogeneity of clinical responses to these drugs in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy.

Methods

Blood samples were collected from 61 locally advanced breast cancers (36 HER2- and 25 HER2+) at diagnosis and from 23 healthy women. Immunophenotypic profiling of circulating and intratumor immune cells, including regulatory T (Treg) cells, was assessed by flow cytometry and immunohistochemistry, respectively. Serum levels of 10 different cytokines were assessed by multiplex immunoassays. CD8+ T cell responses to multiple tumor-associated antigens (TAA) were evaluated by IFN-γ-enzyme-linked immunosorbent spot (ELISPOT). The Student's t test for two tailed distributions and the Wilcoxon two-sample test were used for the statistical analysis of the data.

Results

The proportion of circulating immune effectors was similar in HER2+ patients and healthy donors, whereas higher percentages of natural killer and Treg cells and a lower CD4+/CD8+ T cell ratio (with a prevalence of naïve and central memory CD8+ T cells) were observed in HER2- cases. Higher numbers of circulating CD8+ T cells specific for several HLA-A*0201-restricted TAA-derived peptides were observed in HER2+ cases, together with a higher prevalence of intratumor CD8+ T cells. Serum cytokine profile of HER2+ patients was similar to that of controls, whereas HER2- cases showed significantly lower cytokine amounts compared to healthy women (IL-2, IL-8, IL-6) and HER2+ cases (IL-2, IL-1β, IL-8, IL-6, IL-10).

Conclusions

Compared to HER2- cases, patients with HER2-overexpressing locally advanced breast cancer show a more limited tumor-related immune suppression. This may account for the clinical benefit achieved in this subset of patients with the use of drugs acting through, but also promoting, immune-mediated effects.

【 授权许可】

   
2011 Muraro et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140707014823932.pdf 2961KB PDF download
Figure 4. 49KB Image download
Figure 3. 60KB Image download
Figure 2. 125KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Mauri D, Pavlidis N, Ioannidis JP: Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 2005, 97:188-194.
  • [2]Rouzier R, Mathieu MC, Sideris L, Youmsi E, Rajan R, Garbay JR, Andre F, Marsiglia H, Spielmann M, Delaloge S: Breast-conserving surgery after neoadjuvant anthracycline-based chemotherapy for large breast tumors. Cancer 2004, 101:918-925.
  • [3]Ferriere JP, Assier I, Cure H, Charrier S, Kwiatkowski F, Achard JL, Dauplat J, Chollet P: Primary chemotherapy in breast cancer: correlation between tumor response and patient outcome. Am J Clin Oncol 1998, 21:117-120.
  • [4]Borg A, Tandon AK, Sigurdsson H, Clark GM, Ferno M, Fuqua SA, Killander D, McGuire WL: HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 1990, 50:4332-4337.
  • [5]Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR: Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 1990, 8:103-112.
  • [6]Valabrega G, Montemurro F, Aglietta M: Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007, 18:977-984.
  • [7]Kono K, Sato E, Naganuma H, Takahashi A, Mimura K, Nukui H, Fujii H: Trastuzumab (Herceptin) enhances class I-restricted antigen presentation recognized by HER-2/neu-specific T cytotoxic lymphocytes. Clin Cancer Res 2004, 10:2538-2544.
  • [8]Lee LF, Hellendall RP, Wang Y, Haskill JS, Mukaida N, Matsushima K, Ting JP: IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J Immunol 2000, 164:2769-2775.
  • [9]Tong AW, Seamour B, Lawson JM, Ordonez G, Vukelja S, Hyman W, Richards D, Stein L, Maples PB, Nemunaitis J: Cellular immune profile of patients with advanced cancer before and after taxane treatment. Am J Clin Oncol 2000, 23:463-472.
  • [10]Chan OT, Yang LX: The immunological effects of taxanes. Cancer Immunol Immunother 2000, 49:181-185.
  • [11]Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D: Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer 2002, 87:21-27.
  • [12]Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG: Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 2000, 62:245-252.
  • [13]Andersen MH, Reker S, Kvistborg P, Becker JC, Thor SP: Spontaneous immunity against Bcl-xL in cancer patients. J Immunol 2005, 175:2709-2714.
  • [14]Murta EF, de Andrade JM, Falcao RP, Bighetti S: Lymphocyte subpopulations in patients with advanced breast cancer submitted to neoadjuvant chemotherapy. Tumori 2000, 86:403-407.
  • [15]Dewan MZ, Takada M, Terunuma H, Deng X, Ahmed S, Yamamoto N, Toi M: Natural killer activity of peripheral-blood mononuclear cells in breast cancer patients. Biomed Pharmacother 2009, 63:703-706.
  • [16]Scheltinga SA, Williams F, van der Zwan AW, Rozemuller EH, Middleton D, Tilanus MG: HLA-A towards a high-resolution DNA typing. Tissue Antigens 1998, 51:549-552.
  • [17]Perret R, Ronchese F: Memory T cells in cancer immunotherapy: which CD8 T-cell population provides the best protection against tumours? Tissue Antigens 2008, 72:187-194.
  • [18]Inokuma M, dela RC, Schmitt C, Haaland P, Siebert J, Petry D, Tang M, Suni MA, Ghanekar SA, Gladding D, Dunne JF, Maino VC, Disis ML, Maecker HT: Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature. J Immunol 2007, 179:2627-2633.
  • [19]Kilinc MO, Gu T, Harden JL, Virtuoso LP, Egilmez NK: Central role of tumor-associated CD8+ T effector/memory cells in restoring systemic antitumor immunity. J Immunol 2009, 182:4217-4225.
  • [20]Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401:708-712.
  • [21]Stanzer S, Dandachi N, Balic M, Resel M, Samonigg H, Bauernhofer T: Resistance to apoptosis and expansion of regulatory T cells in relation to the detection of circulating tumor cells in patients with metastatic epithelial cancer. J Clin Immunol 2008, 28:107-114.
  • [22]Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St GB, Clayberger C, Soper DM, Ziegler SF, Bluestone JA: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006, 203:1701-1711.
  • [23]Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin JF, Coudert B: Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 2006, 94:259-267.
  • [24]Arlen PM, Gulley JL, Parker C, Skarupa L, Pazdur M, Panicali D, Beetham P, Tsang KY, Grosenbach DW, Feldman J, Steinberg SM, Jones E, Chen C, Marte J, Schlom J, Dahut W: A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 2006, 12:1260-1269.
  • [25]Vazquez-Martin A, Colomer R, Menendez JA: Protein array technology to detect HER2 (erbB-2)-induced 'cytokine signature' in breast cancer. Eur J Cancer 2007, 43:1117-1124.
  • [26]Salgado R, Junius S, Benoy I, Van DP, Vermeulen P, Van ME, Huget P, Dirix LY: Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 2003, 103:642-646.
  • [27]Perez SA, Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG, Salagianni ML, Orphanos G, Baxevanis CN, Rigatos G, Papamichail M: CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res 2007, 13:2714-2721.
  • [28]Mozaffari F, Lindemalm C, Choudhury A, Granstam-Bjorneklett H, Helander I, Lekander M, Mikaelsson E, Nilsson B, Ojutkangas ML, Osterborg A, Bergkvist L, Mellstedt H: NK-cell and T-cell functions in patients with breast cancer: effects of surgery and adjuvant chemo- and radiotherapy. Br J Cancer 2007, 97:105-111.
  • [29]Chen G, Shankar P, Lange C, Valdez H, Skolnik PR, Wu L, Manjunath N, Lieberman J: CD8 T cells specific for human immunodeficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood 2001, 98:156-164.
  • [30]Hislop AD, Gudgeon NH, Callan MF, Fazou C, Hasegawa H, Salmon M, Rickinson AB: EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J Immunol 2001, 167:2019-2029.
  • [31]Valmori D, Scheibenbogen C, Dutoit V, Nagorsen D, Asemissen AM, Rubio-Godoy V, Rimoldi D, Guillaume P, Romero P, Schadendorf D, Lipp M, Dietrich PY, Thiel E, Cerottini JC, Lienard D, Keilholz U: Circulating Tumor-reactive CD8(+) T cells in melanoma patients contain a CD45RA(+)CCR7(-) effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 2002, 62:1743-1750.
  • [32]Lurquin C, Lethe B, De PE, Corbiere V, Theate I, van BN, Coulie PG, Boon T: Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 2005, 201:249-257.
  • [33]Finn OJ, Jerome KR, Henderson RA, Pecher G, Domenech N, Magarian-Blander J, Barratt-Boyes SM: MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 1995, 145:61-89.
  • [34]Jaramillo A, Majumder K, Manna PP, Fleming TP, Doherty G, Dipersio JF, Mohanakumar T: Identification of HLA-A3-restricted CD8+ T cell epitopes derived from mammaglobin-A, a tumor-associated antigen of human breast cancer. Int J Cancer 2002, 102:499-506.
  • [35]Meier A, Reker S, Svane IM, Holten-Andersen L, Becker JC, Sondergaard I, Andersen MH, Thor SP: Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients. Cancer Immunol Immunother 2005, 54:219-228.
  • [36]Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, Thor SP: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 2001, 61:5964-5968.
  • [37]Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001, 61:3689-3697.
  • [38]Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR: Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011, 29:1949-1955.
  • [39]Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E, Marth C: The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 2005, 11:8326-8331.
  • [40]Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002, 169:2756-2761.
  • [41]Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, Savage P, Stebbing J: The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer 2009, 100:1061-1067.
  • [42]Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B: Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003, 9:606-612.
  • [43]Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, Disis ML: IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 2006, 177:84-91.
  • [44]Yokoe T, Iino Y, Morishita Y: Trends of IL-6 and IL-8 levels in patients with recurrent breast cancer: preliminary report. Breast Cancer 2000, 7:187-190.
  • [45]Arduino S, Tessarolo M, Bellino R, Colombatto S, Leo L, Wierdis T, Lanza A: Reduced IL-2 level concentration in patients with breast cancer as a possible risk factor for relapse. Eur J Gynaecol Oncol 1996, 17:535-537.
  • [46]Rao VS, Dyer CE, Jameel JK, Drew PJ, Greenman J: Potential prognostic and therapeutic roles for cytokines in breast cancer (Review). Oncol Rep 2006, 15:179-185.
  • [47]Shen WH, Zhou JH, Broussard SR, Freund GG, Dantzer R, Kelley KW: Proinflammatory cytokines block growth of breast cancer cells by impairing signals from a growth factor receptor. Cancer Res 2002, 62:4746-4756.
  • [48]Saglam S, Suzme R, Gurdol F: Serum tumor necrosis factor-alpha and interleukin-2 concentrations in newly diagnosed ERBB2 (HER2/neu) positive breast cancer patients. Int J Biol Markers 2009, 24:142-146.
  • [49]Staaf J, Ringner M, Vallon-Christersson J, Jonsson G, Bendahl PO, Holm K, Arason A, Gunnarsson H, Hegardt C, Agnarsson BA, Luts L, Grabau D, Ferno M, Malmstrom PO, Johannsson OT, Loman N, Barkardottir RB, Borg A: Identification of subtypes in human epidermal growth factor receptor 2--positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol 2010, 28:1813-1820.
  • [50]Carson WE, Shapiro CL, Crespin TR, Thornton LM, Andersen BL: Cellular immunity in breast cancer patients completing taxane treatment. Clin Cancer Res 2004, 10:3401-3409.
  文献评价指标  
  下载次数:43次 浏览次数:27次