GigaScience | |
Large-scale analysis of the evolutionary histories of phosphorylation motifs in the human genome | |
Shujiro Okuda1  Hisayoshi Yoshizaki2  | |
[1] Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku 951-8510, Niigata, Japan;Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-0058, Shiga, Japan | |
关键词: Kinase; Comparative evolutionary analysis; Phosphorylation motif; | |
Others : 1204330 DOI : 10.1186/s13742-015-0057-6 |
|
received in 2014-10-01, accepted in 2015-04-01, 发布年份 2015 | |
【 摘 要 】
Background
Protein phosphorylation is a post-translational modification that is essential for a wide range of eukaryotic physiological processes, such as transcription, cytoskeletal regulation, cell metabolism, and signal transduction. Although more than 200,000 phosphorylation sites have been reported in the human genome, the physiological roles of most remain unknown. In this study, we provide some useful datasets for the assessment of functional phosphorylation signaling using a comparative genome analysis of phosphorylation motifs.
Findings
We described the evolutionary patterns of conservation of these and comparative genomic data for 93,101 phosphosites and 1,003,756 potential phosphosites in human phosphomotifs, using 178 phosphomotifs identified in a previous study that occupied 69% of known phosphosites in public databases. Comparative genomic analyses were performed using genomes from nine species from yeast to humans. Here we provide an overview of the evolutionary patterns of phosphomotif acquisition and indicate the dependence on motif structures. Using the data from our previous study, we describe the interaction networks of phosphoproteins, identify the kinase substrates associated with phosphoproteins, and perform gene ontology enrichment analyses. In addition, we show how this dataset can help to elucidate the function of phosphomotifs.
Conclusions
Our characterizations of motif structures and assessments of evolutionary conservation of phosphosites reveal physiological roles of unreported phosphosites. Thus, interactions between protein groups that share motifs are likely to be helpful for inferring kinase-substrate interaction networks. Our computational methods can be used to elucidate the relationships between phosphorylation signaling and cellular functions.
【 授权许可】
2015 Yoshizaki and Okuda; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150524040418274.pdf | 562KB | download | |
Figure 3. | 40KB | Image | download |
Figure 2. | 21KB | Image | download |
Figure 1. | 19KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002; 298(5600):1912-34.
- [2]Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K et al.. Systematic discovery of in vivo phosphorylation networks. Cell. 2007; 129(7):1415-26.
- [3]Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 2007; 8(11):R250. BioMed Central Full Text
- [4]Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. 2007; 8(7):530-41.
- [5]Yoshizaki H, Okuda S. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis. BMC Genomics. 2014; 15(1):546. BioMed Central Full Text
- [6]Yoshizaki H, Okuda S: Supporting data and materials for “Large-scale analysis of evolutionary histories of phosphorylation motifs in the human genome”. GigaScience Database 2015, http://doi.org/10.5524/100136.
- [7]Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, Lim WA, Fraser JS, Frydman J, Krogan NJ. Systematic functional prioritization of protein posttranslational modifications. Cell. 2012; 150(2):413-25.
- [8]Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin AC, van Noort V, Bork P. Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol. 2012; 8:599.
- [9]Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 2011; 39(Database issue):D253-60.
- [10]Lee TY, Huang HD, Hung JH, Huang HY, Yang YS. Wang TH: dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res. 2006; 34(Database issue):D622-7.
- [11]Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F. Phospho.ELM: a database of phosphorylation sites–update. Nucleic Acids Res 2011. 2011; 39(Database issue):D261-7.
- [12]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al.. Human Protein Reference Database–2009 update. Nucleic Acids Res. 2009; 37(Database issue):D767-72.
- [13]PhosphoSitePlus. http://www.phosphosite.org/homeAction.do.
- [14]Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012; 40(Database issue):D261-70.
- [15]Nakaya A, Katayama T, Itoh M, Hiranuka K, Kawashima S, Moriya Y, Okuda S, Tanaka M, Tokimatsu T, Yamanishi Y et al.. KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res. 2013; 41(Database issue):D353-7.
- [16]Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-80.
- [17]Landry CR, Levy ED, Michnick SW. Weak functional constraints on phosphoproteomes. TIG. 2009; 25(5):193-7.
- [18]Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen activated protein kinases family. PLoS One. 2011; 6(10): Article ID e26999
- [19]Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003; 31(13):3635-41.
- [20]Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T et al.. Linear motif atlas for phosphorylation-dependent signaling. Sci Signal. 2008; 1(35):ra2.
- [21]Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L et al.. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013; 41(Database issue):D816-23.
- [22]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P et al.. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011; 39(Database issue):D561-8.
- [23]Cytoscape. http://www.cytoscape.org/.
- [24]Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T. A travel guide to Cytoscape plugins. Nat Methods. 2012; 9(11):1069-76.
- [25]Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S et al.. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003; 4(4):R28. BioMed Central Full Text
- [26]KEGG BRITE Database. http://www.genome.jp/kegg/brite_ja.html.
- [27]KEGG SSDB Database. http://www.kegg.jp/kegg/ssdb/.
- [28]Lehmann S, Bass JJ, Szewczyk NJ. Knockdown of the C. elegans kinome identifies kinases required for normal protein homeostasis, mitochondrial network structure, and sarcomere structure in muscle. CCS. 2013; 11:71.
- [29]Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, Done J, Grove C, Howe K et al.. WormBase 2014: new views of curated biology. Nucleic Acids Res. 2014; 42(Database issue):D789-93.