期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Gene expression profile analyze the molecular mechanism of CXCR7 regulating papillary thyroid carcinoma growth and metastasis
Zhen Liu1  Lei Zhang1  Zhangyi Liu1  Xuyong Teng1  Hengwei Zhang1 
[1] Department General Surgery, Affiliated Shenjing Hospital, China Medical University, No.36 Sanhao Street, Shenyang 110004, China
关键词: Signal pathway;    Gene microarray;    Metastasis;    Invasion;    CXCR7;    Chemokine receptor;    Thyroid carcinoma;   
Others  :  1133384
DOI  :  10.1186/s13046-015-0132-y
 received in 2014-10-12, accepted in 2015-02-02,  发布年份 2015
PDF
【 摘 要 】

Background

To detect genetic expression profile alterations after papillary thyroid carcinoma (PTC) cells transfected with chemokine receptor CXCR7 gene by gene microarray, and gain insights into molecular mechanisms of how CXCR7 regulating PTC growth and metastasis.

Methods

The Human OneArray microarray was used for a complete genome-wide transcript profiling of CXCR7 transfected PTCs (K1-CXCR7 cells), defined as experimental group. Non CXCR7 transfected PTCs (K1 cells) were used as control group. Differential analysis for per gene was performed with a random variance model and t test, p values were adjusted to control the false discovery rate. Gene ontology (GO) on differentially expressed genes to identify the biological processes in modulating the progression of papillary thyroid carcinoma. Pathway analysis was used to evaluate the signaling pathway that differentially expressed genes were involved in. In addition, quantitative real-time polymerase chain reaction (q-PCR) and Western blot were used to verify the top differentially expression genes.

Results

Comparative analysis revealed that the expression level of 1149 genes was changed in response to CXCR7 transfection. After unsupervised hierarchical clustering analysis, 270 differentially expressed genes were filtered, of them 156 genes were up-regulated whereas 114 genes were down-regulated in K1-CXCR7 cells. GO enrichment analysis revealed the differentially expressed genes were mainly involved in biopolymer metabolic process, signal transduction and protein metabolism. Pathway enrichment analysis revealed differentially expressed genes were mainly involved in ECM-receptor interaction, Focal adhesion, MAPK signaling pathway and Cytokine-cytokine receptor interaction pathway. More importantly, the expression level of genes closely associated with tumor growth and metastasis was altered significantly in K1-CXCR7 cells, including up-regulated genes FN1, COL1A1, COL4A1, PDGFRB, LTB, CXCL12, MMP-11, MT1-MMP and down-regulated genes ITGA7, and Notch-1.

Conclusions

Gene expression profiling analysis of papillary thyroid carcinoma can further delineate the mechanistic insights on how CXCR7 regulating papillary thyroid carcinoma growth and metastasis. CXCR7 may regulate growth and metastasis of papillary thyroid carcinoma via the activation of PI3K/AKT pathway and its downstream NF-κB signaling, as well as the down-regulation of Notch signaling.

【 授权许可】

   
2015 Zhang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304143430920.pdf 1433KB PDF download
Figure 4. 54KB Image download
Figure 3. 43KB Image download
Figure 2. 51KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Vandercappellen J, Van Damme J, Struyf S: The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008, 267:226-44.
  • [2]Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E: Control of chemokine-guided cell migration by ligand sequestration. Cell 2008, 132:463-73.
  • [3]Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, Wei K, McMaster BE, Wright K, Howard MC, Schall TJ: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006, 203:2201-13.
  • [4]Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J: CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010, 29:709-22.
  • [5]Hao M, Zheng J, Hou K, Wang J, Chen X, Lu X, Bo J, Xu C, Shen K, Wang J: Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem Pharmacol 2012, 84:204-14.
  • [6]Zheng K, Li HY, Su XL, Wang XY, Tian T, Li F, Ren GS: Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J Exp Clin Cancer Res 2010, 29:31. BioMed Central Full Text
  • [7]Singh RK, Lokeshwar BL: The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res 2011, 71:3268-77.
  • [8]Liu Z, Sun DX, Teng XY, Xu WX, Meng XP, Wang BS: Expression of stromal cellderived factor 1 and CXCR7 in papillary thyroid carcinoma. Endocr Pathol 2012, 23:247-53.
  • [9]Liu Z, Yang L, Teng X, Zhang H, Guan H: The involvement of CXCR7 in modulating the progression of papillary thyroid carcinoma. J Surg Res 2014, 191:379-88.
  • [10]The Human OneArray® Service. [http://www.onearray.com.cn/Services/Genome_Std.php]
  • [11]Wang D, Anderson JC, Gladson CL: The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 2005, 15:318-26.
  • [12]Paik JY, Ko BH, Jung KH, Lee KH: Fibronectin stimulates endothelial cell 18F-FDG uptake through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt signaling. J Nucl Med 2009, 50:618-24.
  • [13]Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A: Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 2001, 98:15044-9.
  • [14]Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A: Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res 2003, 9:68-75.
  • [15]Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A: Hashimoto’s thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 2004, 45:39-46.
  • [16]Wang YH, Dong YY, Wang WM, Xie XY, Wang ZM, Chen RX, Chen J, Gao DM, Cui JF, Ren ZG: Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. J Exp Clin Cancer Res 2013, 32:51. BioMed Central Full Text
  • [17]St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW: Genes expressed in human tumor endothelium. Science 2000, 289:1197-202.
  • [18]Lee KY, Huang SM, Li S, Kim JM: Identification of differentially expressed genes in papillary thyroid cancers. Yonsei Med J 2009, 50:60-7.
  • [19]Ricupero DA, Poliks CF, Rishikof DC, Cuttle KA, Kuang PP, Goldstein RH: Phosphatidylinositol 3-kinase-dependent stabilization of alpha1(I) collagen mRNA in human lung fibroblasts. Am J Physiol Cell Physiol 2001, 281:C99-105.
  • [20]Chetty A, Cao GJ, Nielsen HC: Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 2006, 60:389-94.
  • [21]Kalluri R: Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003, 3:422-33.
  • [22]Bozec A, Lassalle S, Hofman V, Ilie M, Santini J, Hofman P: The thyroid gland: a crossroad in inflammation-induced carcinoma? An ongoing debate with new therapeutic potential. Curr Med Chem 2010, 17:3449-61.
  • [23]Guarino V, Castellone MD, Avilla E, Melillo RM: Thyroid cancer and inflammation. Mol Cell Endocrinol 2010, 321:94-102.
  • [24]Weng MY, Huang YT, Liu MF, Lu TH: Incidence of cancer in a nationwide population cohort of 7852 patients with primary Sjogren’s syndrome in Taiwan. Ann Rheum Dis 2012, 71:524-7.
  • [25]Zhang J, Wang P, Dykstra M, Gelebart P, Williams D, Ingham R, Adewuyi EE, Lai R, McMullen T: Platelet-derived growth factor receptor-α promotes lymphatic metastases in papillary thyroid cancer. J Pathol 2012, 228:241-50.
  • [26]Gong L, Chen P, Liu X, Han Y, Zhou Y, Zhang W, Li H, Li C, Xie J: Expressions of D2-40, CK19, galectin-3, VEGF and EGFR in papillary thyroid carcinoma. Gland Surg 2012, 1:25-32.
  • [27]Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F: The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007, 67:585-92.
  • [28]Galbán S, Fan J, Martindale JL, Cheadle C, Hoffman B, Woods MP, Temeles G, Brieger J, Decker J, Gorospe M: von Hippel-Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. Mol Cell Biol 2003, 23:2316-28.
  • [29]Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438:820-7.
  • [30]Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, Emilie D, Terrassa M, Lackner A, Curiel TJ, Carmeliet P, Zou W: CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005, 65:465-72.
  • [31]Balkwill F: Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 2002, 13:135-41.
  • [32]Karin M: Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441:431-6.
  • [33]Madge LA, Kluger MS, Orange JS, May MJ: Lymphotoxin-alpha 1 beta 2 and LIGHT induce classical and noncanonical NF-kappa B-dependent proinflammatory gene expression in vascular endothelial cells. J Immunol 2008, 180:3467-77.
  • [34]Luster AD: Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998, 338:436-45.
  • [35]Christopherson K, Hromas R: Chemokine regulation of normal and pathologic immune responses. Stem Cells 2001, 19:388-96.
  • [36]Sutton A, Friand V, Brulé-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O, Poiré A, Saffar L, Kraemer M, Vassy J, Nahon P, Salzmann JL, Gattegno L, Charnaux N: Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res 2007, 5:21-33.
  • [37]Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N, Sun B: Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res 2008, 27:62. BioMed Central Full Text
  • [38]Maeta H, Ohgi S, Terada T: Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Arch 2001, 438:121-8.
  • [39]Wani N, Nasser MW, Ahirwar DK, Zhao H, Miao Z, Shilo K, Ganju RK: C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res 2014, 16:R54. BioMed Central Full Text
  • [40]Baldini E, Toller M, Graziano FM, Russo FP, Pepe M, Biordi L, Marchioni E, Curcio F, Ulisse S, Ambesi-Impiombato FS, D’Armiento M: Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines. Thyroid 2004, 14:881-8.
  • [41]Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, Seiki M, Ichikawa K: Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS Comput Biol 2012, 8:e1002479.
  • [42]Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M, Okada Y: Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 1999, 59:467-73.
  • [43]Ren B, Yu YP, Tseng GC, Wu C, Chen K, Rao UN, Nelson J, Michalopoulos GK, Luo JH: Analysis of integrin alpha7 mutations in prostate cancer, liver cancer, glioblastoma multiforme, and leiomyosarcoma. J Natl Cancer Inst 2007, 99:868-80.
  • [44]Han YC, Yu YP, Nelson J, Wu C, Wang H, Michalopoulos GK, Luo JH: Interaction of integrin-linked kinase and miniature chromosome maintenance 7-mediating integrin {alpha}7 induced cell growth suppression. Cancer Res 2010, 70:4375-84.
  • [45]Tan LZ, Song Y, Nelson J, Yu YP, Luo JH: Integrin α7 binds tissue inhibitor of metalloproteinase 3 to suppress growth of prostate cancer cells. Am J Pathol 2013, 183:831-40.
  • [46]Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, Ladu S, Singer S, Pinna F, Gretz N, Sticht C, Tomasi ML, Delogu S, Evert M, Fan B, Ribback S, Jiang L, Brozzetti S, Bergmann F, Dombrowski F, Schirmacher P, Calvisi DF, Breuhahn K: Yes-associated protein up-regulates jagged-1 and activates the NOTCH pathway in human hepatocellular carcinoma. Gastroenterology 2013, 144:1530-42.
  • [47]Ercan C, Vermeulen JF, Hoefnagel L, Bult P, van der Groep P, van der Wall E, van Diest PJ: HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell Oncol (Dordr) 2012, 35:435-42.
  • [48]Ferretti E, Tosi E, Po A, Scipioni A, Morisi R, Espinola MS, Russo D, Durante C, Schlumberger M, Screpanti I, Filetti S, Gulino A: Notch signaling is involved in expression of thyrocyte differentiation markers and is down-regulated in thyroid tumors. J Clin Endocrinol Metab 2008, 93:4080-7.
  • [49]Ning L, Greenblatt DY, Kunnimalaiyaan M, Chen H: Suberoyl bis-hydroxamic acid activates Notch-1 signaling and induces apoptosis in medullary thyroid carcinoma cells. Oncologist 2008, 13:98-104.
  • [50]Kunnimalaiyaan M, Chen H: Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 2007, 12:535-42.
  • [51]Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H: Over-expression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem 2006, 281:39819-30.
  • [52]Zhang J, Wang Y, Li D, Jing S: Notch and TGF-β/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour Biol 2014, 35:379-85.
  • [53]Geers C, Colin IM, Gérard AC: Delta-like 4/Notch pathway is differentially regulated in benign and malignant thyroid tissues. Thyroid 2011, 21:1323-30.
  • [54]Park HS, Jung CK, Lee SH, Chae BJ, Lim DJ, Park WC, Song BJ, Kim JS, Jung SS, Bae JS: Notch1 receptor as a marker of lymph node metastases in papillary thyroid cancer. Cancer Sci 2012, 103:305-9.
  • [55]Xiao X, Ning L, Chen H: Notch1 mediates growth suppression of papillary and follicular thyroid cancer cells by histone deacetylase inhibitors. Mol Cancer Ther 2009, 8:350-6.
  • [56]Song J, Park S, Kim M, Shin I: Down-regulation of Notch-dependent transcription by Akt in vitro. FEBS Lett 2008, 582:1693-9.
  • [57]Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM: Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells 2011, 29:678-88.
  • [58]Su C, Chen Z, Luo H, Su Y, Liu W, Cai L, Wang T, Lei Y, Zhong B: Different patterns of NF-κB and Notch1 signaling contribute to tumor-inducedlymphangiogenesis of esophageal squamous cell carcinoma. J Exp Clin Cancer Res 2011, 22(30):85. BioMed Central Full Text
  • [59]Takeyama K, Aguiar RC, Gu L, He C, Freeman GJ, Kutok JL, Aster JC, Shipp MA: The BAL-binding protein BBAP and related Deltex family members exhibit ubiquitin-protein isopeptide ligase activity. J Biol Chem 2003, 278:21930-7.
  • [60]Veiga-Castelli LC, Silva JC, Meola J, Ferriani RA, Yoshimoto M, Santos SA, Squire JA, Martelli L: Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas. Braz J Med Biol Res 2010, 43:799-805.
  文献评价指标  
  下载次数:50次 浏览次数:13次