Journal of Hematology & Oncology | |
Recent updates on the role of microRNAs in prostate cancer | |
Fazlul H Sarkar2  Seema Sethi1  Aamir Ahmad1  Oudai Hassan1  | |
[1] Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA;Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA | |
关键词: Metastasis; Carcinogenesis; Prostate Cancer; miRNAs; | |
Others : 822551 DOI : 10.1186/1756-8722-5-9 |
|
received in 2012-02-16, accepted in 2012-03-14, 发布年份 2012 |
【 摘 要 】
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in several important biological processes through regulation of genes post-transcriptionally. Carcinogenesis is one of the key biological processes where miRNAs play important role in the regulation of genes. The miRNAs elicit their effects by binding to the 3' untranslated region (3'UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNA, depending on the degree of complementary base pairing. To-date more than 1,000 miRNAs are postulated to exist, although the field is moving rapidly. Currently, miRNAs are becoming the center of interest in a number of research areas, particularly in oncology, as documented by exponential growth in publications in the last decade. These studies have shown that miRNAs are deregulated in a wide variety of human cancers. Thus, it is reasonable to ask the question whether further understanding on the role of miRNAs could be useful for diagnosis, prognosis and predicting therapeutic response for prostate cancer (PCa). Therefore, in this review article, we will discuss the potential roles of different miRNAs in PCa in order to provide up-to-date information, which is expected to stimulate further research in the field for realizing the benefit of miRNA-targeted therapeutic approach for the treatment of metastatic castrate resistant prostate cancer (mCRPC) in the near future because there is no curative treatment for mCRPC at the moment.
【 授权许可】
2012 Hassan et al; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Fig. 3. | 14KB | Image | download |
【 图 表 】
Fig. 3.
【 参考文献 】
- [1]Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D, et al.: Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 2011, 6:e20341.
- [2]Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC, et al.: Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Invest 2011, 29:318-324.
- [3]Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, et al.: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 2011, 130:611-621.
- [4]Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al.: miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 2011, 350:207-213.
- [5]Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ: The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev 2004, 18:132-137.
- [6]Doench JG, Sharp PA: Specificity of microRNA target selection in translational repression. Genes Dev 2004, 18:504-511.
- [7]Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843-854.
- [8]Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75:855-862.
- [9]Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH: MicroRNA and Cancer: Tiny molecules with major implications. Curr Genomics 2008, 9:97-109.
- [10]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al.: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403:901-906.
- [11]Griffiths-Jones S, Grocock RJ, Van DS, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144.
- [12]Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003, 113:673-676.
- [13]Coppola V, De MR, Bonci D: MicroRNAs and prostate cancer. Endocr Relat Cancer 2010, 17:F1-F17.
- [14]Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol 2007, 23:175-205.
- [15]Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008, 9:219-230.
- [16]Gangaraju VK, Lin H: MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009, 10:116-125.
- [17]Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD: MicroRNAs: new regulators of immune cell development and function. Nat Immunol 2008, 9:839-845.
- [18]Cullen BR: Viral and cellular messenger RNA targets of viral microRNAs. Nature 2009, 457:421-425.
- [19]Latronico MV, Condorelli G: MicroRNAs and cardiac pathology. Nat Rev Cardiol 2009, 6:419-429.
- [20]Bushati N, Cohen SM: MicroRNAs in neurodegeneration. Curr Opin Neurobiol 2008, 18:292-296.
- [21]Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11:441-450.
- [22]Baranwal S, Alahari SK: miRNA control of tumor cell invasion and metastasis. Int J Cancer 2010, 126:1283-1290.
- [23]Pang Y, Young CY, Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 2010, 42:363-369.
- [24]Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al.: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 2010, 5:e8697.
- [25]Aqeilan RI, Calin GA, Croce CM: miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010, 17:215-220.
- [26]Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, et al.: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007, 104:19983-19988.
- [27]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al.: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008, 27:4373-4379.
- [28]Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, et al.: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 2006, 5:24. BioMed Central Full Text
- [29]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67:6130-6135.
- [30]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al.: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051-4060.
- [31]Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432:231-235.
- [32]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al.: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
- [33]Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10:185-191.
- [34]Yi R, Qin Y, Macara IG, Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17:3011-3016.
- [35]Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409:363-366.
- [36]Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001, 15:2654-2659.
- [37]Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293-296.
- [38]Schwarz DS, Hutvagner G, Haley B, Zamore PD: Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 2002, 10:537-548.
- [39]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8:755-768.
- [40]DeSano JT, Xu L: MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J 2009, 11:682-692.
- [41]Papagiannakopoulos T, Kosik KS: MicroRNAs: regulators of oncogenesis and stemness. BMC Med 2008, 6:15. BioMed Central Full Text
- [42]Dick JE: Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol 1996, 8:197-206.
- [43]Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006, 12:1167-1174.
- [44]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005, 65:10946-10951.
- [45]Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al.: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006, 25:1696-1708.
- [46]Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG: Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007, 67:6796-6805.
- [47]Croce CM, Calin GA: miRNAs, cancer, and stem cell division. Cell 2005, 122:6-7.
- [48]Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010, 463:621-626.
- [49]Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al.: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131:1109-1123.
- [50]Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al.: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009, 138:592-603.
- [51]Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al.: Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004, 270:488-498.
- [52]He L, He X, Lim LP, De SE, Xuan Z, Liang Y, et al.: A microRNA component of the p53 tumour suppressor network. Nature 2007, 447:1130-1134.
- [53]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al.: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007, 26:731-743.
- [54]Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al.: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007, 26:745-752.
- [55]Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al.: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007, 17:1298-1307.
- [56]Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al.: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007, 6:1586-1593.
- [57]Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al.: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011, 17:211-215.
- [58]Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139:871-890.
- [59]Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, et al.: TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 2011, 6:e21650.
- [60]Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119:1420-1428.
- [61]Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ: The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 2009, 66:1682-1699.
- [62]Zeisberg M, Neilson EG: Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009, 119:1429-1437.
- [63]Ahmad A, Ali AS, Ali S, Wang Z, Kong D, Sarkar FH: MicroRNAs: Targets of Interest in Breast Cancer Research. In MicroRNA: Expression, Detection and Therapeutic Strategies. Edited by Mulligan JA. New York: Nova Publishers; 2011:59-78.
- [64]Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al.: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010, 126:1166-1176.
- [65]Ozen M, Creighton CJ, Ozdemir M, Ittmann M: Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008, 27:1788-1793.
- [66]Fu X, Xue C, Huang Y, Xie Y, Li Y: The activity and expression of microRNAs in prostate cancers. Mol Biosyst 2010, 6:2561-2572.
- [67]Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, et al.: miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 2009, 4:e7542.
- [68]Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010, 15:117-134.
- [69]Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, et al.: miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009, 27:1712-1721.
- [70]Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, et al.: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 2010, 5:e12445.
- [71]Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, et al.: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011, 128:608-616.
- [72]Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, et al.: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011, 30:4231-4242.
- [73]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
- [74]Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W, et al.: Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 2011, 71:3400-3409.
- [75]Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC: miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 2010. DOI: 10.1002/ijc.25753
- [76]Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P: The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 2009, 69:3356-3363.
- [77]Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, et al.: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007, 282:23716-23724.
- [78]Zheng C, Yinghao S, Li J: MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol 2011. DOI: 10.1007/s12032-011-9934-8
- [79]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene 2007, 26:2799-2803.
- [80]Selcuklu SD, Donoghue MT, Spillane C: miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 2009, 37:918-925.
- [81]Li T, Li D, Sha J, Sun P, Huang Y: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 2009, 383:280-285.
- [82]Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, et al.: miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009, 69:7165-7169.
- [83]Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, et al.: Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 2011, 6:e17850.
- [84]Lee YS, Kim HK, Chung S, Kim KS, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005, 280:16635-16641.
- [85]Vere White RW, Vinall RL, Tepper CG, Shi XB: MicroRNAs and their potential for translation in prostate cancer. Urol Oncol 2009, 27:307-311.
- [86]Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, et al.: Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 2010, 70:3606-3617.
- [87]Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH: Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 2010, 3:28-47.
- [88]Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M, et al.: Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 2011. DOI:10.1002/jcp.24036
- [89]Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA, et al.: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 2012. DOI:10.1016/j.canlet.2012.01.013
- [90]Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, et al.: MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 2012, 33:68-76.