期刊论文详细信息
EvoDevo
The unique pseudanthium of Actinodium (Myrtaceae) - morphological reinvestigation and possible regulation by CYCLOIDEA-like genes
Victor A Albert3  Neville Marchant1  Kester Bull-Hereñu2  Raili Ruonala3  Regine Claßen-Bockhoff2 
[1] Kings Park and Botanic Garden, West Perth, WA, 6005, Australia;Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität, Mainz, 55099, Germany;Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY, USA
关键词: TCP;    Pseudanthium;    Myrtaceae;    Inflorescence development;    Gene expression;    CYCLOIDEA;    Asteraceae;   
Others  :  806865
DOI  :  10.1186/2041-9139-4-8
 received in 2012-08-14, accepted in 2012-12-07,  发布年份 2013
PDF
【 摘 要 】

Background

Genes encoding TCP transcription factors, such as CYCLOIDEA-like (CYC-like) genes, are well known actors in the control of plant morphological development, particularly regarding the control of floral symmetry. Despite recent understanding that these genes play a role in establishing the architecture of inflorescences in the sunflower family (Asteraceae), where hundreds of finely organized flowers are arranged to mimic an individual flower, little is known about their function in the development of flower-like inflorescences across diverse phylogenetic groups. Here, we studied the head-like pseudanthium of the Australian swamp daisy Actinodium cunninghamii Schau. (Myrtaceae, the myrtle family), which consists of a cluster of fertile flowers surrounded by showy ray-shaped structures, to fully characterize its inflorescence development and to test whether CYC-like genes may participate in the control of its daisy-like flowering structures.

Results

We used standard morphological and anatomical methods to analyze Actinodium inflorescence development. Furthermore, we isolated Actinodium CYC-like genes using degenerate PCR primers, and studied the expression patterns of these genes using quantitative RT-PCR. We found that the ray-shaped elements of Actinodium are not single flowers but instead branched short-shoots occasionally bearing flowers. We found differential expression of CYC-like genes across the pseudanthium of Actinodium, correlating with the showiness and branching pattern of the ray structures.

Conclusions

The Actinodium inflorescence represents a novel type of pseudanthium with proximal branches mimicking ray flowers. Expression patterns of CYC-like genes are suggestive of participation in the control of pseudanthium development, in a manner analogous to the distantly related Asteraceae. As such, flowering plants appear to have recruited CYC-like genes for heteromorphic inflorescence development at least twice during their evolutionary history.

【 授权许可】

   
2013 Claßen-Bockhoff et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708100641335.pdf 4939KB PDF download
Figure 6. 51KB Image download
Figure 5. 38KB Image download
Figure 4. 215KB Image download
Figure 3. 196KB Image download
Figure 2. 100KB Image download
Figure 1. 213KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Busch A, Zachgo S: Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. Bioessays 2009, 31:1181-1190.
  • [2]Cubas P, Lauter N, Doebley J, Coen E: The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 1999, 18:215-222.
  • [3]Doebley J, Stec A, Hubbard L: The evolution of apical dominance in maize. Nature 1997, 386:485-488.
  • [4]Busch A, Zachgo S: Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc Natl Acad Sci U S A 2007, 104:16714-16719.
  • [5]Citerne HL, Pennington RT, Cronk QCB: An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc Natl Acad Sci U S A 2006, 103:12017-12020.
  • [6]Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D: Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A 2006, 103:4970-4975.
  • [7]Hileman LC, Baum DA: Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol Biol Evol 2003, 20:591-600.
  • [8]Howarth DG, Martins T, Chimney E, Donoghue MJ: Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Ann Bot 2011, 107:1521-1532.
  • [9]Preston JC, Hileman LC: Developmental genetics of floral symmetry evolution. Trends Plant Sci 2009, 14:147-154.
  • [10]Preston JC, Martinez CC, Hileman LC: Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proc Natl Acad Sci U S A 2011, 108:2343-2348.
  • [11]Song CF, Lin QB, Liang RH, Wang YZ: Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evol Biol 2009, 9:244. BioMed Central Full Text
  • [12]Zhang W, Kramer EM, Davis CC: Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proc Natl Acad Sci U S A 2010, 107:6388-6393.
  • [13]Howarth DG, Donoghue MJ: Phylogenetic analysis of the ECE CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A 2006, 103:9101-9106.
  • [14]Aguilar-Martinez JA, Poza-Carrion C, Cubas P: Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 2007, 19:458-472.
  • [15]Finlayson SA: Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot teosinte branched1. Plant Cell Physiol 2007, 48:667-677.
  • [16]Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P: Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 2011, 67:701-714.
  • [17]Braun N, de Saint GA, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C: The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 2012, 158:225-238.
  • [18]Dun EA, de Saint GA, Rameau C, Beveridge CA: Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 2012, 158:487-498.
  • [19]Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C: The OsTB1 gene negatively regulates lateral branching in rice. Plant J 2003, 33:513-520.
  • [20]Broholm S, Tähtiharju S, Laitinen RA, Albert VA, Teeri TH, Elomaa P: A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci U S A 2008, 105:9117-9122.
  • [21]Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E: Regulatory genes control a key morphological and ecological trait transferred between species. Science 2008, 322:1116-1119.
  • [22]Tahtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P: Evolution and diversification of the CYC/TB1 gene family in Asteraceae–a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 2012, 29:1155-1166.
  • [23]Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM: Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 2012, 8:e1002628.
  • [24]Jeffrey C: Evolution of Compositae flowers. In Systematics, Evolution, and Biogeography of Compositae. Edited by Funk VA, Susanna A, Stuessy TF, Bayer RJ. Vienna: IAPT; 2009:131-138.
  • [25]Troll W: Organisation und Gestalt im Bereich der Blüte. Berlin: Springer; 1928.
  • [26]Claßen-Bockhoff R: Pattern analysis in pseudanthia. Plant Syst Evol 1990, 171:57-88.
  • [27]Claßen-Bockhoff R: Anthodien, Pseudanthien und Infloreszenzblumen. Beiträge zur Biologie der Pflanzen 1991, 66:221-240.
  • [28]Bentham G: Flora Australiensis. London: Reeve; 1867.
  • [29]Briggs BG, Johnson LAS: Evolution in the Myrtaceae-evidence from inflorescence structure. Proc Linn Soc NSW 1979, 102:157-256.
  • [30]Wilson PG, O’Brian MM, Heslewood MM, Quinn CJ: Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Syst Evol 2005, 251:3-19.
  • [31]Chapman MA, Leebens-Mack JH, Burke JM: Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 2008, 25:1260-1273.
  • [32]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [33]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008, 57:758-771.
  • [34]Harris EM: Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts. Bot Rev 1995, 61:93-278.
  • [35]Bull-Hereñu K, Claßen-Bockhoff R: Open and closed inflorescences: more than simple opposites. J Exp Bot 2011, 62:79-88.
  • [36]Kwiatkowska D: Flowering and apical meristem growth dynamics. J Exp Bot 2008, 59:187-201.
  • [37]Troll W: Die Infloreszenzen. Typologie und Stellung im Aufbau des Vegetationskörpers. Jena: Fischer; 1964–1969.
  • [38]Weberling F: Morphology of Flowers and Inflorescences. Cambridge, UK: Cambridge University Press; 1989.
  • [39]Bartholomew D: Inflorescence development of pineapple (Ananas comosus [L.] Merr.) induced to flower with ethephon. Bot Gaz 1977, 138:312-320.
  • [40]Chiurugwi T, Pouteau S, Nicholls D, Tooke F, Ordidge M, Battey N: Floral meristem indeterminacy depends in flower position and is facilitated by acarpellate gynoecium development in Impatiens balsamina. New Phytol 2007, 173:79-90.
  • [41]McCullough E, Wright KM, Alvarez A, Clark CP, Rickoll WL, Madlung A: Photoperiod-dependent floral reversion in the natural allopolyploid Arabidopis suecica. New Phytol 2010, 186:239-250.
  • [42]Tooke F, Ordidge M, Chiurugwi T, Battey N: Mechanisms and function of flower and inflorescence reversion. J Exp Bot 2005, 56:2587-2599.
  • [43]Washburn CF, Thomas JF: Reversion of flowering in Glycine max. Am J Bot 2000, 87:1425-1438.
  • [44]Claßen-Bockhoff R, Bull-Hereñu K: Towards an ontogenetic understanding of inflorescence diversity. Ann Bot 2013. in press
  • [45]Doust AN: The developmental basis of floral variation in Drimys winteri (Winteraceae. Int J Plant Sci 2001, 162:697-717.
  • [46]Bull-Hereñu K, Claßen-Bockhoff R: Ontogenetic course and spatial constraints in the appearance and disappearance of the terminal flower in inflorescences. Int J Plant Sci 2011, 172:471-498.
  • [47]Holm E: On Pollination and Pollinators in Western Australia. Byskovvej 4 DK-8751 Gedved, Denmark: Eigil Holm; 1988.
  • [48]Claßen-Bockhoff R: (Prä-)Disposition, Variation und Bewährung am Beispiel der Infloreszenzblumenbildung. Mitt Hamb Zool Mus Instt 89 1992, 1:37-72.
  • [49]Thomas M, Rudall P, Ellis A, Savolainen V, Glover BJ: Development of a complex floral trait: the pollinator-attracting petals of the beetle daisy, Gorteria diffusa (Asteraceae). Am J Bot 2009, 96:2184-2196.
  • [50]Hempel FD, Feldmann LJ: Bi-directional inflorescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paraclades. Planta 1994, 192:276-286.
  • [51]Stauffer HU: Gestaltwandel bei Blütenstanden von Dicotyledonen. Botanische Jahrbücher 1963, 82:216-251.
  • [52]Koyama T, Sato F, Ohme-Takagi M: A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Biosci Biotechnol Biochem 2010, 74:2145-2147.
  • [53]Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J: TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 2010, 22:1161-1173.
  文献评价指标  
  下载次数:33次 浏览次数:21次