期刊论文详细信息
Fibrogenesis & Tissue Repair
Lipid mediators in diabetic nephropathy
Keizo Kanasaki2  Daisuke Koya2  Sen Shi1  Swayam Prakash Srivastava1 
[1] Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan;Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
关键词: Antidyslipidaemic drugs and microRNAs (miRs);    Glyceroshingolpids;    Diacylglycerol (DAG);    Protein kinase Cs (PKCs);    Diabetic nephropathy (DN);   
Others  :  1121607
DOI  :  10.1186/1755-1536-7-12
 received in 2014-06-30, accepted in 2014-08-08,  发布年份 2014
PDF
【 摘 要 】

The implications of lipid lowering drugs in the treatment of diabetic nephropathy have been considered. At the same time, the clinical efficacy of lipid lowering drugs has resulted in improvement in the cardiovascular functions of chronic kidney disease (CKD) patients with or without diabetes, but no remarkable improvement has been observed in the kidney outcome. Earlier lipid mediators have been shown to cause accumulative effects in diabetic nephropathy (DN). Here, we attempt to analyze the involvement of lipid mediators in DN. The hyperglycemia-induced overproduction of diacyglycerol (DAG) is one of the causes for the activation of protein kinase C (PKCs), which is responsible for the activation of pathways, including the production of VEGF, TGFβ1, PAI-1, NADPH oxidases, and NFҟB signaling, accelerating the development of DN. Additionally, current studies on the role of ceramide are one of the major fields of study in DN. Researchers have reported excessive ceramide formation in the pathobiological conditions of DN. There is less report on the effect of lipid lowering drugs on the reduction of PKC activation and ceramide synthesis. Regulating PKC activation and ceramide biosynthesis could be a protective measure in the therapeutic potential of DN. Lipid lowering drugs also upregulate anti-fibrotic microRNAs, which could hint at the effects of lipid lowering drugs in DN.

【 授权许可】

   
2014 Srivastava et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150212030435720.pdf 968KB PDF download
Figure 3. 90KB Image download
Figure 2. 86KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hirano T: Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol 2014, 18:206-209.
  • [2]Chen HC, Guh JY, Chang JM: Role of lipid control in diabetic nephropathy. Kidney Int 2005, 67:S60-S62.
  • [3]Barylski M, Nikfar S, Mikhailidis DP, Toth PP, Salari P, Ray KK, Pencina MJ, Rizzo M, Rysz J, Abdollahi M, Nicholls SJ, Banach M: Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy—a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol Res 2013, 72:35-44.
  • [4]Ting RD, Keech AC, Drury PL, Donoghoe MW, Hedley J, Jenkins AJ, Davis TM, Lehto S, Celermajer D, Simes RJ, Rajamani K, Stanton K: Benefits and safety of long- term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD study. Diabetes Care 2012, 35:218-225.
  • [5]Coonrod BA, Ellis D, Becker DJ, Bunker CH, Kelsey SF, Lloyd CE, Drash AL, Kuller LH, Orchard TJ: Predictors of microalbuminuria in individuals with IDDM. Pittsburgh epidemiology of diabetes complications study. Diabetes Care 1993, 16:1376-1383.
  • [6]Watts GF, Powerie JK, O’Brien SF, Shaw KM: Apolipoprotein B independently predicts progression of very-low-level albuminuria in insulin-dependent diabetes. Metabolism 1996, 45:1101-1107.
  • [7]Parving HH, Rossing P, Hommel E, Smidt UM: Angiotensin converting enzyme inhibition in diabetic nephropathy: Ten year’s experience. Am J Kidney Dis 1995, 26:99-107.
  • [8]Ravid M, Brosh D, Ravid-Safrand D, Levy Z, Rachmani R: Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 1998, 158:998-1004.
  • [9]Samuelsson O, Mulec H, Knight-Gibson C, Attman PO, Kron B, Larsson R, Weiss L, Wedel H, Alaupovic P: Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant 1997, 12:1908-1915.
  • [10]Krolewski AS, Warram JH, Christlieb AR: Hypercholesterolemia-a determinant of renal function loss and deaths in IDDM patients with nephropathy. Kidney Int Suppl 1994, 45:S125-S131.
  • [11]Fried LF: Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease. Kidney Int 2008, 74:571-576.
  • [12]Appel GB, Radhakrishnan J, Avram MM, DeFronzo RA, Escobar-Jimenez F, Campos MM, Burgess E, Hille DA, Dickson TZ, Shahinfar S, Brenner BM: Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care 2003, 26:1402-1407.
  • [13]Kaysen GA, Gambertoglio J, Felts J, Hutchison FN: Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients. Kidney Int 1987, 31:1368-1376.
  • [14]Sasaki T, Kurata H, Noumura K, Utsunomiya K, Ikeda Y: Amelioration of proteinuria with pravastatin in hypercholesterolemic patients with diabetes mellitus. Jpn J Med 1990, 29:156-163.
  • [15]Shoji T, Nishizawa Y, Toyokawa A, Kawagishi T, Okuno Y, Morii H: Decreased albuminuria by pravastatin in hyperlipidemic diabetics. Nephron 1991, 59:664-665.
  • [16]Tonolo G, Ciccarese M, Brizzi P, Puddu L, Secchi G, Calvia P, Atzeni MM, Melis MG, Maioli M: Reduction of albumin excretion rate in normotensive microalbuminuric type 2 diabetic patients during long-term simvastatin treatment. Diabetes Care 1997, 20:1891-1895.
  • [17]Fried LF, Forrest KY, Ellis D, Chang Y, Silvers N, Orchard TJ: Lipid modulation in insulindependent diabetes mellitus: Effect on microvascular outcomes. J Diabetes Complications 2001, 15:113-119.
  • [18]Scharschmidt LA, Gibbons NB, McGarry L, Berger P, Axelrod M, Janis R, Young HK: Effects of dietary fish oil on renal insufficiency in rats with subtotal nephrectomy. Kidney Int 1987, 32:700-709.
  • [19]Salvati P, Ferti C, Ferrario RG, Lamberti E, Duzzi L, Bianchi G, Remuzzi G, Perico N, Benigni A, Braidotti P, Coggi G, Pugliese F, Patrono C: Role of enhanced glomerular synthesis of thromboxane A2 in progressive kidney disease. Kidney Int 1990, 38:447-458.
  • [20]Gonin-Jmaa D, Senior DF: The hyperfiltration theory: progression of chronic renal failure and the effects of diet in dogs. J Am Vet Med Assoc 1995, 11:1411-1415.
  • [21]Kelley V, Ferretti A, Shozo I, Strom T: A fish oil diet rich in eicosapentaenoic acid reduces cyclooxygenase metabolites, and suppresses lupus in MRL-1pr mice. J Immunol 1985, 134:1914-1919.
  • [22]Heifets M, Morrisey JJ, Purkerson ML, Morrison AR, Klahr S: Effect of dietary lipids on renal function in rats with subtotal nephrectomy. Kid Int 1987, 32:335-341.
  • [23]Ahmad FK, He Z, King GL: Molecular targets of diabetic cardiovascular complications. Curr Drug Targets 2005, 6:487-494.
  • [24]Li J, Gobe G: Protein kinase C activation and its role in kidney disease. Nephrology 2006, 11:428-434.
  • [25]Koya D, King GL: Protein Kinase C Activation and the Development of Diabetic Complications. Diabetes 1998, 47:859-866.
  • [26]Tuttle KR, Anderson PW: A novel potential therapy for diabetic nephropathy and vascular complications: Protein kinase C beta inhibition. Am J Kidney Dis 2003, 42:456-465.
  • [27]Bohlen HG, Nase GP, Jin JS: Multiple mechanisms of early hyperglycaemic injury of the rat intestinal microcirculation. Clin Exp Pharmacol Physiol 2002, 29:138-142.
  • [28]Kunisaki M, Bursell SE, Umeda F, Nawata H, King GL: Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 1994, 43:1372-1377.
  • [29]Raptis AE, Viberti G: Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 2001, 109:S424-S437.
  • [30]Hao CM, Breyer MD: Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kid Int 2007, 71:1105-1115.
  • [31]Hannun YA: Functions of ceramide in coordinating cellular responses to stress. Science 1996, 274:1855-1859.
  • [32]Pena LA, Fuks Z, Kolesnick R: Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 1997, 53:615-621.
  • [33]Zager RA, Conrad S, Lochhead K, Sweeney EA, Igarashi Y, Burkhart KM: Altered sphingomyelinase and ceramide expression in the setting of ischemic and nephrotoxic acute renal failure. Kid Int 1998, 53:573-582.
  • [34]Kalhorn T, Zager RA: Renal cortical ceramide patterns during ischemic and toxic injury: assessments by HPLC-mass spectrometry. Am J Physiol 1999, 277:F723-F733.
  • [35]Itoh Y, Yano T, Sendo T, Sueyasu M, Hirano K, Kanaide H, Oishi R: Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell injury. Kidney Int 2006, 69:288-297.
  • [36]Yi F, Zhang AY, Janscha JL, Li PL, Zou AP: Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 2004, 66:1977-1987.
  • [37]Morrissey JJ: Pleiotropic effects of amitriptyline ameliorate renal fibrosis. Kid Int 2009, 75:583-584.
  • [38]Achar E, Achar RA, Paiva TB, Campos AH, Schor N: Amitriptyline eliminates calculi through urinary tract smooth muscle relaxation. Kidney Int 2003, 64:1356-1364.
  • [39]Hurwitz R, Frlinz K, Sndhoff K: The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 1994, 375:447-450.
  • [40]Achar E, Maciel TT, Collares CF, Teixeira VP, Schor N: Amitriptyline attenuates interstitial inflammation and ameliorates the progression of renal fibrosis. Kidney Int 2009, 75:596-604.
  • [41]Koya D, Campese VM: Statin use in patients with diabetes and kidney disease: The Japanese Experience. J Atheroscl Thromb 2013, 20:407-424.
  • [42]Teramoto T: Interim analysis of the Atorvastatin Lipid Lowering Assesment Survey in Patients with hypercholesterolemia (ALWAYS study). Therap Res 2011, 32:1587-1603. In Japanese
  • [43]Oda H, Keane WF: Recent advances in statins and the kidney. Kidney Int Suppl 1999, 56:S2-S5.
  • [44]Kimura S, Inoguchi T, Yokomizo H, Maeda Y, Sonoda N, Takayanagi R: Randomized comparison of pitavastatin and pravastatin treatment on the reduction of urinary albumin in patients with type 2 diabetic nephropathy. Diabetes Obes Metab 2012, 14:666-669.
  • [45]Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M: Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb 2011, 18:1018-1028.
  • [46]Rutter MK, Prais HR, Charlton-Menys V, Gittins M, Roberts C, Davies RR, Moorhouse A, Jinadev P, France M, Wiles PG, Gibson JM, Dean J, Kalra PA, Cruickshank JK, Durrington PN: Protection Against Nephropathy in Diabetes with Atorvastatin (PANDA): a randomized double-blind placebo-controlled trial of high- vs. low-dose atorvastatin(1). Diabet Med 2011, 28:100-108.
  • [47]Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Charlton-Menys V, DeMicco DA, Fuller JH: CARDS Investigators: Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis 2009, 54:810-819.
  • [48]Zoja C, Corna D, Rottoli D, Cattaneo D, Zanchi C, Tomasoni S, Abbate M, Remuzzi G: Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney Int 2002, 61:1635-1645.
  • [49]O’Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF: Lovastatin inhibits proliferation of rat mesangial cells. J Clin Invest 1993, 91:83-87.
  • [50]Gaede P, Vedel P, Larsen N, Jensen GVH, Parving HH, Pedersen O: Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003, 348:383-393.
  • [51]Huang Y, Hu Y: Lipid lowering agents in chronic kidney disease: do fibrate have a role? Nat Rev Cardiol 2013, 10:547.
  • [52]Upadhyay A, Earley A, Lamont JL, Haynes S, Wanner C, Balk EM: Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2012, 157:251-262.
  • [53]Danesh FR, Kanwar YS: Modulatory effect of HMG-CoA reductase inhibitors in diabetic microangiopathy. FASEB 2004, 18:805-815.
  • [54]McCullough PA, Di Loreto MJ: Fibrates and cardiorenal outcomes. J Am Coll Cardiol 2012, 60:2072-2073.
  • [55]Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesäniemi YA, Sullivan D, Hunt D, Colman P, D’Emden M, Whiting M, Ehnholm C, Laakso M: Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005, 366:1849-1861.
  • [56]Mychaleckyj JC, Craven T, Nayak U, Buse J, Crouse JR, Elam M, Kirchner K, Lorber D, Marcovina S, Sivitz W, Sperl-Hillen J, Bonds DE, Ginsberg HN: Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care 2012, 35:1008-1014.
  • [57]Jun M, Zhu B, Tonelli M, Jardine MJ, Patel A, Neal B, Liyanage T, Keech A, Cass A, Perkovic V: Effects of fibrates in kidney disease: a systematic review and meta- analysis. J Am Coll Cardiol 2012, 60:2061-2071.
  • [58]Udani SM, Bakris GL: Do fibrates truly preserve kidney function? Nat Rev Endocrinol 2011, 7:130-131.
  • [59]Baigent C, Landray M, Leaper C, Altmann P, Armitage J, Baxter A, Cairns HS, Collins R, Foley RN, Frighi V, Kourellias K, Ratcliffe PJ, Rogerson M, Scoble JE, Tomson CR, Warwick G, Wheeler DC: First United Kingdom Heart and Renal Protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis 2005, 45:473-484.
  • [60]Sharp Collaborative Group: Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J 2010, 160:785-794.
  • [61]Sharp Collaborative Group: The eff ects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomized placebo-controlled trial. Lancet 2011, 377:2181-2192.
  • [62]Kato M, Arce L, Natarajn R: MicroRNAs and their role in progressive kidney diseases. Clin J American Soc Nephrol 2009, 4:1255-1266.
  • [63]Srivastava SP, Koya D, Kanasaki K: MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. BioMed Res Int 2013, 2013:125469.
  • [64]Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S: Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012, 14:249-256.
  • [65]Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004, 279:52361-52365.
  • [66]Quintavalle M, Condorelli G, Elia L: Arterial remodeling and atherosclerosis: miRNAs involvement. Vasc Pharmacol 2011, 55:106-110.
  • [67]Long X, Miano JM: Transforming Growth Factor-b1 (TGF-b1) Utilizes Distinct Pathways for the Transcriptional Activation of MicroRNA 143/145 in Human Coronary Artery Smooth Muscle Cells. J Biol Chem 2011, 286:30119-30129.
  • [68]Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A: Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-b and bone morphogenetic protein 4. J Biol Chem 2011, 286:28097-28110.
  • [69]Tabuchi T, Satoh M, Itoh T, Nakamura M: MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci 2012, 123:161-171.
  • [70]Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Kubota E, Tokuyama H, Hayashi K, Guarente L, Itoh H: Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 2013, 19:1496-1504.
  • [71]Nagai T, Kanasaki M, Srivastava SP, Nakamura Y, Ishigaki Y, Kitada M, Shi S, Kanasaki K, Koya D: N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. BioMed Res Int 2014, 2014:696475.
  • [72]Wang XX, Jiang T, Shen Y: Diabetic nephropathy is accelerated by Farnesoid X receptor deficiency and inhibited by Farnesoid X receptor activation in a type 1 diabetes model. Diabetes 2010, 59:2916-2927.
  • [73]Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, Iwahashi M, Sutherland E, Arend L, Levi M: Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 2007, 56:2485-2493.
  • [74]Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y, Ishigaki Y, Kitada M, Srivastava SP, Koya D: Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014, 63:2120-2131.
  • [75]Kwan BCH, Kronenberg F, Beddhu S, Cheung AK: Lipoprotein metabolism and lipid management in chronic didney disease. J Am Soc Nephrol 2007, 18:1246-1261.
  • [76]Diamond JR: Analogous pathobiologic mechanisms in glomerulosclerosis and atherosclerosis. Kidney Int Suppl 1991, 31:S29-S34.
  文献评价指标  
  下载次数:9次 浏览次数:6次