期刊论文详细信息
EvoDevo
Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus
Richard H Thomas1  Austen A Barnett1 
[1] Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA
关键词: Acariformes;    Acari;    Opisthosoma;    Chelicerate;    Arthropod;    Segment-polarity;    Abdominal-B, Patched;    Ultrabithorax;    Hox;   
Others  :  806320
DOI  :  10.1186/2041-9139-4-23
 received in 2013-05-30, accepted in 2013-07-15,  发布年份 2013
PDF
【 摘 要 】

Background

Hox genes encode transcription factors that have an ancestral role in all bilaterian animals in specifying regions along the antero-posterior axis. In arthropods (insects, crustaceans, myriapods and chelicerates), Hox genes function to specify segmental identity, and changes in Hox gene expression domains in different segments have been causal to the evolution of novel arthropod morphologies. Despite this, the roles of Hox genes in arthropods that have secondarily lost or reduced their segmental composition have been relatively unexplored. Recent data suggest that acariform mites have a reduced segmental component of their posterior body tagma, the opisthosoma, in that only two segments are patterned during embryogenesis. This is in contrast to the observation that in many extinct and extant chelicerates (that is, horseshoe crabs, scorpions, spiders and harvestmen) the opisthosoma is comprised of ten or more segments. To explore the role of Hox genes in this reduced body region, we followed the expression of the posterior-patterning Hox genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B), as well as the segment polarity genes patched (ptc) and engrailed (en), in the oribatid mite Archegozetes longisetosus.

Results

We find that the expression patterns of ptc are in agreement with previous reports of a reduced mite opisthosoma. In comparison to the ptc and en expression patterns, we find that Ubx and Abd-B are expressed in a single segment in A. longisetosus, the second opisthosomal segment. Abd-B is initially expressed more posteriorly than Ubx, that is, into the unsegmented telson; however, this domain clears in subsequent stages where it remains in the second opisthosomal segment.

Conclusions

Our findings suggest that Ubx and Abd-B are expressed in a single segment in the opisthosoma. This is a novel observation, in that these genes are expressed in several segments in all studied arthropods. These data imply that a reduction in opisthosomal segmentation may be tied to a dramatically reduced Hox gene input in the opisthosoma.

【 授权许可】

   
2013 Barnett and Thomas; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708092306973.pdf 1742KB PDF download
Figure 4. 99KB Image download
Figure 3. 164KB Image download
Figure 2. 113KB Image download
Figure 1. 162KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Hueber SD, Lohmann I: Shaping segments: Hox gene function in the genomic age. Bioessays 2008, 30:965-979.
  • [2]Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005, 6:893-904.
  • [3]Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010, 344:7-15.
  • [4]Pick L, Heffer A: Hox gene evolution: multiple mechanisms contributing to evolutionary novelties. Ann NY Acad Sci 2012, 1256:15-32.
  • [5]Lee PN, Callaerts P, de Couet HG, Martindale MQ: Cephalopod Hox genes and the origin of morphological novelties. Nature 2003, 424:1061-1065.
  • [6]Hughes CL, Kaufman TC: Hox genes and the evolution of the arthropod body plan. Evol Dev 2002, 4:459-499.
  • [7]Cohn MJ, Tickle C: Developmental basis of limblessness and axial patterning in snakes. Nature 1999, 399:474-479.
  • [8]Schneider I, Aneas I, Gehrke AR, Dahn RD, Nobrega MA, Shubin NH: Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Proc Natl Acad Sci USA 2011, 108:12782-12786.
  • [9]Ronshaugen M, McGinnis N, McGinnis W: Hox protein mutation and macroevolution of the insect body plan. Nature 2002, 415:914-917.
  • [10]Damen WGM: Hox genes and the body plans of chelicerates and pycnogonids. In Hox Genes: Studies from the 20th to the 21st Century. Volume 689. Berlin: Springer-Verlag Berlin; 2010::125-132.
  • [11]Averof M: Arthropod Hox genes: insights on the evolutionary forces that shape gene functions. Curr Opin Genet Dev 2002, 12:386-392.
  • [12]Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M: Hox genes and the phylogeny of the arthropods. Curr Biol 2001, 11:759-763.
  • [13]Carroll SB, DiNardo S, O’Farrell PH, White RAH, Scott MP: Temporal and spatial relationships between segmentation and homeotic gene-expression in Drosophila embryos - distributions of the Fushi-tarazu, Engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Gene Dev 1988, 2:350-360.
  • [14]McGinnis W, Krumlauf R: Homeobox genes and axial patterning. Cell 1992, 68:283-302.
  • [15]Gebelein B, McKay DJ, Mann RS: Direct integration of Hox and segmentation gene inputs during Drosophila development. Nature 2004, 431:653-659.
  • [16]Damen WGM, Hausdorf M, Seyfarth EA, Tautz D: A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 1998, 95:10665-10670.
  • [17]Popadic A, Nagy L: Conservation and variation in Ubx expression among chelicerates. Evol Dev 2001, 3:391-396.
  • [18]Sharma PP, Schwager EE, Extavour CG, Giribet G: Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 2012, 14:450-463.
  • [19]Damen WGM, Tautz D: Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 1999, 285:85-91.
  • [20]Damen WGM, Tautz D: Comparative molecular embryology of arthropods: the expression of Hox genes in the spider Cupiennius salei. Invertebr Reprod Dev 1999, 36:203-209.
  • [21]Khadjeh S, Turetzek N, Pechmann M, Schwager EE, Wimmer EA, Damen WGM, Prpic N-M: Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci USA 2012, 109:4921-4926.
  • [22]Barnett AA, Thomas RH: The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 2012, 14:383-392.
  • [23]Westheide W, Regier R: Spezielle Zoologie, Erster Teil: Einzeller und Wirbellose Tiere. Verlag, Stuttgart: Gustav Fischer; 1996.
  • [24]Janssen R, Budd GE, Damen WGM, Prpic N-M: Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 2008, 218:361-370.
  • [25]Akiyama-Oda Y, Oda H: Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 2010, 137:1263-1273.
  • [26]Hidalgo A, Ingham P: Cell patterning in the Drosophila segment - spatial regulation of the segment polarity gene patched. Development 1990, 110:291-301.
  • [27]Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbić V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, et al.: The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2011, 479:487-492.
  • [28]Sanson B: Generating patterns from fields of cells - examples from Drosophila segmentation. EMBO Rep 2001, 2:1083-1088.
  • [29]Peel AD, Chipman AD, Akam M: Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 2005, 6:905-916.
  • [30]Telford MJ, Thomas RH: Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 1998, 95:10671-10675.
  • [31]Kelsh R, Weinzierl ROJ, White RAH, Akam M: Homeotic gene-expression in the locust Schistocerca - an antibody that detects conserved epitopes in Ultrabithorax and Abdominal-A proteins. Dev Genet 1994, 15:19-31.
  • [32]Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S: Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 1999, 9:109-115.
  • [33]Warren RW, Nagy L, Selegue J, Gates J, Carroll S: Evolution of homeotic gene regulation and function in flies and butterflies. Nature 1994, 372:458-461.
  • [34]Zheng Z, Khoo A, Fambrough D, Garza L, Booker R: Homeotic gene expression in the wild-type and a homeotic mutant of the moth Manduca sexta. Dev Genes Evol 1999, 209:460-472.
  • [35]Bennett RL, Brown SJ, Denell RE: Molecular and genetic analysis of the Tribolium Ultrabithorax ortholog, Ultrathorax. Dev Genes Evol 1999, 209:608-619.
  • [36]Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH: Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci USA 2009, 106:13892-13896.
  • [37]Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M: Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci USA 2009, 106:13897-13902.
  • [38]Averof M, Patel NH: Crustacean appendage evolution associated with changes in Hox gene expression. Nature 1997, 388:682-686.
  • [39]Janssen R, Damen WGM: The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 2006, 216:451-465.
  • [40]Janssen R, Budd GE: Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 2010, 1:4. BioMed Central Full Text
  • [41]Grenier JK, Garber TL, Warren R, Whitington PM, Carroll S: Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 1997, 7:547-553.
  • [42]Hughes CL, Kaufman TC: Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 2002, 129:1225-1238.
  • [43]Kuziora MA, McGinnis W: Different transcripts of the Drosophila Abd-B gene correlate with distinct genetic sub-functions. EMBO J 1988, 7:3233-3244.
  • [44]Celniker SE, Lewis EB: Transabdominal, a dominant mutant of the bithorax complex, produces a sexually dimorphic segmental transformation in Drosophila. Gene Dev 1987, 1:111-123.
  • [45]Estrada B, Sanchez-Herrero E: The Hox gene Abdominal-B antagonizes appendage development in the genital disc of Drosophila. Development 2001, 128:331-339.
  • [46]Beeman RW, Stuart JJ, Haas MS, Denell RE: Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev Biol 1989, 133:196-209.
  • [47]Kelsh R, Dawson I, Akam M: An analysis of Abdominal-B expression in the locust Schistocerca gregaria. Development 1993, 117:293-305.
  • [48]Peterson MD, Rogers BT, Popadic A, Kaufman TC: The embryonic expression pattern of labial, posterior homeotic complex genes and the teashirt homologue in an apterygote insect. Dev Genes Evol 1999, 209:77-90.
  • [49]Aspiras AC, Smith FW, Angelini DR: Sex-specific gene interactions in the patterning of insect genitalia. Dev Biol 2011, 360:369-380.
  • [50]Averof M, Akam M: Hox genes and the diversification of insect and crustacean body plans. Nature 1995, 376:420-423.
  • [51]Brena C, Liu PZ, Minelli A, Kaufman TC: Abd-B expression in Porcellio scaber Latreille, 1804 (Isopoda : Crustacea): conserved pattern versus novel roles in development and evolution. Evol Dev 2005, 7:42-50.
  • [52]Blin M, Rabet N, Deutsch JS, Mouchel-Vielh E: Possible implication of Hox genes Abdominal-B and abdominal-A in the specification of genital and abdominal segments in cirripedes. Dev Genes Evol 2003, 213:90-96.
  • [53]Gibert JM, Mouchel-Vielh E, Queinnec E, Deutsch JS: Barnacle duplicate engrailed genes: divergent expression patterns and evidence for a vestigial abdomen. Evol Dev 2000, 2:194-202.
  • [54]Geant E, Mouchel-Vielh E, Coutanceau J-P, Ozouf-Costaz C, Deutsch JS: Are Cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini. Dev Genes Evol 2006, 216:443-449.
  • [55]Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H: Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 2006, 216:481-491.
  • [56]Casares F, Calleja M, SanchezHerrero E: Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila HOX genes. EMBO J 1996, 15:3934-3942.
  • [57]Ueno K, Hui CC, Fukuta M, Suzuki Y: Molecular analysis of the deletion mutants in the E-homeotic complex of the silkworm Bombyx mori. Development 1992, 114:555-563.
  • [58]Abzhanov A, Popadic A, Kaufman TC: Chelicerate Hox genes and the homology of arthropod segments. Evol Dev 1999, 1:77-89.
  • [59]Telford MJ, Thomas RH: Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 1998, 208:591-594.
  • [60]Telford MJ: Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5. Curr Biol 2000, 10:349-352.
  • [61]Schwager EE, Schoppmeier M, Pechmann M, Damen WGM: Duplicated Hox genes in the spider Cupiennius salei. Front Zool 2007, 4:1-10. BioMed Central Full Text
  • [62]Damen WGM, Tautz D: A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Dev Genes Evol 1998, 208:586-590.
  • [63]Damen WGM, Janssen R, Prpic NM: Pair rule gene orthologs in spider segmentation. Evol Dev 2005, 7:618-628.
  文献评价指标  
  下载次数:42次 浏览次数:16次