期刊论文详细信息
Journal of Biomedical Science
Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice
Pao-Luh Tao4  Horace H. Loh1  Ping-Yee Law1  Eagle Yi-Kung Huang3  Geng-Chang Yeh2  Pao-Pao Yang3 
[1] Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis 55455-0217, MN, USA;Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street,, Taipei City 110, Taiwan;Department of Pharmacology, National Defense Medical Center, 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City 114, Taiwan;Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Taiwan, 35053, Miaoli County, ROC
关键词: Allodynia;    Neuropathic pain;    Spinal nerve ligation;    Dextromethorphan;    Oxycodone;   
Others  :  1230480
DOI  :  10.1186/s12929-015-0186-3
 received in 2015-04-07, accepted in 2015-09-10,  发布年份 2015
PDF
【 摘 要 】

Background

Neuropathic pain is a very troublesome and difficult pain to treat. Although opioids are the best analgesics for cancer and surgical pain in clinic, only oxycodone among opioids shows better efficacy to alleviate neuropathic pain. However, many side effects associated with the use of oxycodone render the continued use of it in neuropathic pain treatment undesirable. Hence, we explored whether dextromethorphan (DM, a known N-methyl-D-aspartate receptor antagonist with neuroprotective properties) could potentiate the anti-allodynic effect of oxycodone and underlying mechanisms regarding to glial cells (astrocytes and microglia) activation and proinflammatory cytokines release in a spinal nerve injury (SNL) mice model.

Results

Oxycodone produced a dose-dependent anti-allodynic effect. Co-administration of DM at a dose of 10 mg/kg (i.p.) (DM10) which had no anti-allodynic effect by itself enhanced the acute oxycodone (1 mg/kg, s.c.) effect. When the chronic anti-allodynic effects were examined, co-administration of DM10 also significantly enhanced the oxycodone effect at 3 mg/kg. Furthermore, oxycodone decreased SNL-induced activation of glial cells (astrocytes and microglia) and plasma levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α). Co-administration of DM10 potentiated these effects of oxycodone.

Conclusion

The combined use of DM with oxycodone may have therapeutic potential for decreasing the effective dose of oxycodone on the treatment of neuropathic pain. Attenuation of the glial activation and proinflammatory cytokines in the spinal cord may be important mechanisms for these effects of DM.

【 授权许可】

   
2015 Yang et al.

【 预 览 】
附件列表
Files Size Format View
20151106091239155.pdf 5825KB PDF download
Fig. 7. 31KB Image download
Fig. 6. 162KB Image download
Fig. 5. 160KB Image download
Fig. 4. 31KB Image download
Fig. 3. 30KB Image download
Fig. 2. 70KB Image download
Fig. 1. 15KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Ueda H, Rashid MH. Molecular mechanism of neuropathic pain. Drug News Perspect. 2003; 16(9):605-13.
  • [2]Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS et al.. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007; 132(3):237-51.
  • [3]Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003; 23(10):4017-22.
  • [4]Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004; 45(1):89-95.
  • [5]Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci. 2002; 22(22):9980-9.
  • [6]Watson CP, Moulin D, Watt-Watson J, Gordon A, Eisenhoffer J. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain. 2003; 105(1–2):71-8.
  • [7]Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology. 2003; 60(6):927-34.
  • [8]Nozaki C, Saitoh A, Kamei J. Characterization of the antinociceptive effects of oxycodone in diabetic mice. Eur J Pharmacol. 2006; 535(1–3):145-51.
  • [9]Narita M, Nakamura A, Ozaki M, Imai S, Miyoshi K, Suzuki M et al.. Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity to morphine. Neuropsychopharmacology. 2008; 33(5):1097-112.
  • [10]Wu J, Xu Y, Pu S, Jiang W, Du D. p38/MAPK inhibitor modulates the expression of dorsal horn GABA(B) receptors in the spinal nerve ligation model of neuropathic pain. Neuroimmunomodulation. 2011; 18(3):150-5.
  • [11]Thibault K, Calvino B, Rivals I, Marchand F, Dubacq S, McMahon SB et al.. Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain. PLoS One. 2014; 9(3): Article ID e91297
  • [12]Wang SC, Chou DT, Wallenstein MC. Studies on the potency of various antitussive agents. Agents Actions. 1977; 7(3):337-40.
  • [13]Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W et al.. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. 1995; 34(10):1239-58.
  • [14]Hernandez SC, Bertolino M, Xiao Y, Pringle KE, Caruso FS, Kellar KJ. Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors. J Pharmacol Exp Ther. 2000; 293(3):962-7.
  • [15]Zhou GZ, Musacchio JM. Computer-assisted modeling of multiple dextromethorphan and sigma binding sites in guinea pig brain. Eur J Pharmacol. 1991; 206(4):261-9.
  • [16]Huang EY, Liu TC, Tao PL. Co-administration of dextromethorphan with morphine attenuates morphine rewarding effect and related dopamine releases at the nucleus accumbens. Naunyn Schmiedebergs Arch Pharmacol. 2003; 368(5):386-92.
  • [17]Lue WM, Huang EY, Yang SN, Wong CS, Tao PL. Post-treatment of dextromethorphan reverses morphine effect on conditioned place preference in rats. Synapse. 2007; 61(6):420-8.
  • [18]Yang PP, Huang EY, Yeh GC, Tao PL. Co-administration of dextromethorphan with methamphetamine attenuates methamphetamine-induced rewarding and behavioral sensitization. J Biomed Sci. 2006; 13(5):695-702.
  • [19]Yang PP, Huang EY, Fu YY, Ho TS, Tao PL. Post-treatment of dextromethorphan on methamphetamine-induced drug-seeking and behavioral sensitization in rats. Synapse. 2012; 66(10):858-69.
  • [20]Prince DA, Feeser HR. Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett. 1988; 85(3):291-6.
  • [21]Karimi G, Tabrizian K, Rezaee R. Evaluation of the analgesic effect of dextromethorphan and its interaction with nitric oxide on sciatic nerve ligated rats. J Acupunct Meridian Stud. 2010; 3(1):38-42.
  • [22]Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res. 2005; 1050(1–2):190-8.
  • [23]Liu Y, Qin L, Li G, Zhang W, An L, Liu B et al.. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther. 2003; 305(1):212-8.
  • [24]Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist. 2007; 13(5):272-93.
  • [25]McGrath JC, Drummond GB, McLachlan EM, Kilkenny C, Wainwright CL. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol. 2010; 160(7):1573-6.
  • [26]Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992; 50(3):355-63.
  • [27]Kao JH, Gao MJ, Yang PP, Law PY, Loh HH, Tao PL. Effect of naltrexone on neuropathic pain in mice locally transfected with the mutant μ-opioid receptor gene in spinal cord. Br J Pharmacol. 2015; 172(2):630-41.
  • [28]Thacker MA, Clark AK, Marchand F, McMahon SB. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg. 2007; 105(3):838-47.
  • [29]Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010; 229(1–2):26-50.
  • [30]Yoburn BC, Shah S, Chan K, Duttaroy A, Davis T. Supersensitivity to opioid analgesics following chronic opioid antagonist treatment: relationship to receptor selectivity. Pharmacol Biochem Behav. 1995; 51(2–3):535-9.
  • [31]Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001; 87(1):12-26.
  • [32]Hall AA, Herrera Y, Ajmo CT, Cuevas J, Pennypacker KR. Sigma receptors suppress multiple aspects of microglial activation. Glia. 2009; 57(7):744-54.
  • [33]Liu CH, Cherng CH, Lin SL, Yeh CC, Wu CT, Tai YH et al.. N-methyl-D-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacol Biochem Behav. 2011; 99(3):371-80.
  • [34]Nelson KA, Park KM, Robinovitz E, Tsigos C, Max MB. High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology. 1997; 48(5):1212-8.
  • [35]Carlsson KC, Hoem NO, Moberg ER, Mathisen LC. Analgesic effect of dextromethorphan in neuropathic pain. Acta Anaesthesiol Scand. 2004; 48(3):328-36.
  • [36]McQuay HJ, Carroll D, Jadad AR, Glynn CJ, Jack T, Moore RA et al.. Dextromethorphan for the treatment of neuropathic pain: a double-blind randomised controlled crossover trial with integral n-of-1 design. Pain. 1994; 59(1):127-33.
  • [37]Mercadante S, Casuccio A, Genovese G. Ineffectiveness of dextromethorphan in cancer pain. J Pain Symptom Manage. 1998; 16(5):317-22.
  • [38]Dematteis M, Lallement G, Mallaret M. Dextromethorphan and dextrorphan in rats: common antitussives--different behavioural profiles. Fundam Clin Pharmacol. 1998; 12(5):526-37.
  • [39]Albers GW, Saenz RE, Moses JA. Tolerability of oral dextromethorphan in patients with a history of brain ischemia. Clin Neuropharmacol. 1992; 15(6):509-14.
  • [40]Ramachander G, Williams FD, Emele JF. Determination of dextrorphan in plasma and evaluation of bioavailability of dextromethorphan hydrobromide in humans. J Pharm Sci. 1977; 66(7):1047-8.
  • [41]Jones DR, Gorski JC, Hamman MA, Hall SD. Quantification of dextromethorphan and metabolites: a dual phenotypic marker for cytochrome P450 3A4/5 and 2D6 activity. J Chromatogr B Biomed Appl. 1996; 678(1):105-11.
  • [42]Huang L, Edwards SR, Smith MT. Comparison of the pharmacokinetics of oxycodone and noroxycodone in male dark agouti and Sprague--Dawley rats: influence of streptozotocin-induced diabetes. Pharm Res. 2005; 22(9):1489-98.
  • [43]Poyhia R, Olkkola KT, Seppala T, Kalso E. The pharmacokinetics of oxycodone after intravenous injection in adults. Br J Clin Pharmacol. 1991; 32(4):516-8.
  • [44]Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999; 353(9168):1959-64.
  • [45]Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia. 1998; 23(1):75-83.
  • [46]Vega-Avelaira D, Moss A, Fitzgerald M. Age-related changes in the spinal cord microglial and astrocytic response profile to nerve injury. Brain Behav Immun. 2007; 21(5):617-23.
  • [47]Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002; 99(1–2):175-84.
  • [48]Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther. 2001; 297(3):1210-7.
  • [49]Wagner R, Myers RR. Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport. 1996; 7(18):2897-901.
  • [50]Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005; 116(3):257-63.
  • [51]Arruda JL, Colburn RW, Rickman AJ, Rutkowski MD, DeLeo JA. Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res Mol Brain Res. 1998; 62(2):228-35.
  • [52]Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008; 28(20):5189-94.
  • [53]Li MH, Luo YH, Lin CF, Chang YT, Lu SL, Kuo CF et al.. Dextromethorphan efficiently increases bactericidal activity, attenuates inflammatory responses, and prevents group a streptococcal sepsis. Antimicrob Agents Chemother. 2011; 55(3):967-73.
  • [54]Chen SL, Lee SY, Tao PL, Chang YH, Chen SH, Chu CH et al.. Dextromethorphan attenuated inflammation and combined opioid use in humans undergoing methadone maintenance treatment. J Neuroimmune Pharmacol. 2012; 7(4):1025-33.
  • [55]Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S et al.. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell. 2011; 147(7):1615-27.
  • [56]Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010; 120(11):3760-72.
  • [57]Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007; 30(10):527-35.
  • [58]Nademanee K. Is pulmonary vein isolation by segmental ostial ablation a correct approach for treatment of atrial fibrillation? Heart Rhythm. 2006; 3(9):1029-30.
  • [59]Ajmo CT, Vernon DO, Collier L, Pennypacker KR, Cuevas J. Sigma receptor activation reduces infarct size at 24 h after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res. 2006; 3(2):89-98.
  • [60]Cobos EJ, Entrena JM, Nieto FR, Cendan CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol. 2008; 6(4):344-66.
  文献评价指标  
  下载次数:63次 浏览次数:34次