期刊论文详细信息
Cancer Cell International
The role of death-associated protein 3 in apoptosis, anoikis and human cancer
Kefah Mokbel4  Abdul Kasem1  Anup K Sharma4  Wen G Jiang2  Zubair S Khanzada2  Mona MAW Orakzai3  Umar Wazir4 
[1] The London Breast Institute, Princess Grace Hospital, London, UK;Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales, UK;Ayub Medical College, Abbottabad, Pakistan;Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
关键词: Breast cancer;    Oncogenesis;    Carcinogenesis;    Cancer;    Anoikis;    Death-associated protein 3;    Review;    Apoptosis;   
Others  :  1171054
DOI  :  10.1186/s12935-015-0187-z
 received in 2014-06-02, accepted in 2015-03-18,  发布年份 2015
PDF
【 摘 要 】

Death-associated protein 3 (DAP3) is a molecule with a significant role in the control of both apoptosis and anoikis. Apoptosis is the predominant type of programmed cell death (PCD) which may occur in response to irreparable damage to DNA, or in response to induction by inflammatory cells. Anoikis is subset of apoptosis which occurs in epithelial cells in response to detachment from the surrounding matrix. Both apoptosis and anoikis are of interest in the context of carcinogenesis. In this review, we shall discuss apoptosis and anoikis, and the recent literature regarding the role of DAP3 in both these pathways.

【 授权许可】

   
2015 Wazir et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150418030341944.pdf 1214KB PDF download
Figure 3. 51KB Image download
Figure 2. 64KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hacker G: The morphology of apoptosis. Cell Tissue Res 2000, 301(1):5-17.
  • [2]Majno G, Joris I: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995, 146(1):3-15.
  • [3]GlÜCksmann A: Cell deaths in normal vertebrate ontogeny. Biol Rev 1951, 26(1):59-86.
  • [4]Kerr JF: Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971, 105(1):13-20.
  • [5]Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26(4):239-57.
  • [6]Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, et al.: Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 2000, 182(1):41-9.
  • [7]Papucci L, Formigli L, Schiavone N, Tani A, Donnini M, Lapucci A, et al.: Apoptosis shifts to necrosis via intermediate types of cell death by a mechanism depending on c-myc and bcl-2 expression. Cell Tissue Res 2004, 316(2):197-209.
  • [8]Leist M: Intracellular Adenosine Triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997, 185(8):1481-6.
  • [9]Chang C, Simmons DT, Martin MA, Mora PT: Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol 1979, 31(2):463-71.
  • [10]Kress M, May E, Cassingena R, May P: Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 1979, 31(2):472-83.
  • [11]May P, May E: Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999, 18(53):7621-36.
  • [12]Maltzman W, Czyzyk L: UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984, 4(9):1689-94.
  • [13]DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 1979, 76(5):2420-4.
  • [14]Basu A, Haldar S: The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 1998, 4(12):1099-109.
  • [15]Cohen GM: Caspases: the executioners of apoptosis. Biochem J 1997, 326(Pt 1):1-16.
  • [16]Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994, 124(4):619-26.
  • [17]Sakamoto S, Kyprianou N: Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med 2010, 31(2):205-14.
  • [18]Krammer PH, Arnold R, Lavrik IN: Life and death in peripheral T cells. Nat Rev Immunol 2007, 7(7):532-42.
  • [19]Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, et al.: Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci U S A 2003, 100(9):5211-6.
  • [20]Aoudjit F, Vuori K: Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 2001, 152(3):633-43.
  • [21]Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H: Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J 2002, 21(17):4520-30.
  • [22]Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, et al.: Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001, 276(49):46639-46.
  • [23]Hsu H, Shu HB, Pan MG, Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996, 84(2):299-308.
  • [24]Kissil JL, Kimchi A: Assignment of death associated protein 3 (DAP3) to human chromosome 1q21 by in situ hybridization. Cytogenet Cell Genet 1997, 77(3–4):252.
  • [25]Miyazaki T, Shen M, Fujikura D, Tosa N, Kim HR, Kon S, et al.: Functional role of death-associated protein 3 (DAP3) in anoikis. J Biol Chem 2004, 279(43):44667-72.
  • [26]Harada T, Iwai A, Miyazaki T: Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis 2010, 15(10):1247-55.
  • [27]Takeda S, Iwai A, Nakashima M, Fujikura D, Chiba S, Li HM, et al.: LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma. Anticancer Res 2007, 27(2):761-8.
  • [28]Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al.: Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer 2013, 108(2):327-33.
  • [29]Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL, et al.: Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A 2013, 110(32):E2950-7.
  • [30]Cleary ML, Smith SD, Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986, 47(1):19-28.
  • [31]Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74(4):609-19.
  • [32]Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ: Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2(3):183-92.
  • [33]Shamas-Din A, Kale J, Leber B, Andrews DW: Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 2013, 5(4):a008714.
  • [34]Hikisz P, Kilianska ZM: PUMA, a critical mediator of cell death–one decade on from its discovery. Cell Mol Biol Lett 2012, 17(4):646-69.
  • [35]Miyashita T, Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80(2):293-9.
  • [36]Zou H: An APAF-1 Cytochrome c Multimeric complex is a functional Apoptosome that activates Procaspase-9. J Biol Chem 1999, 274(17):11549-56.
  • [37]Pop C, Timmer J, Sperandio S, Salvesen GS: The apoptosome activates caspase-9 by dimerization. Mol Cell 2006, 22(2):269-75.
  • [38]Jiang X, Wang X: Cytochrome C-mediated apoptosis. Annu Rev Biochem 2004, 73:87-106.
  • [39]Zhou LL, Zhou LY, Luo KQ, Chang DC: Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 2005, 10(2):289-99.
  • [40]Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, et al.: Structural basis of IAP recognition by Smac/DIABLO. Nature 2000, 408(6815):1008-12.
  • [41]Yu J, Wang P, Ming L, Wood MA, Zhang L: SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene 2007, 26(29):4189-98.
  • [42]Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, et al.: XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis 2010, 1:e49.
  • [43]Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C: Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 2003, 17(12):1487-96.
  • [44]Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, et al.: Proteome-wide Identification of HtrA2/Omi substrates. J Proteome Res 2007, 6(3):1006-15.
  • [45]Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, et al.: DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 2002, 9(9):680-4.
  • [46]Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, et al.: Regulation of AIF expression by p53. Cell Death Differ 2006, 13(12):2140-9.
  • [47]Varecha M, Potesilova M, Matula P, Kozubek M: Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Mol Cell Biochem 2012, 363(1–2):301-7.
  • [48]Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, et al.: Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem 2001, 276(35):33181-95.
  • [49]Kim HR, Chae HJ, Thomas M, Miyazaki T, Monosov A, Monosov E, et al.: Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. FASEB J 2007, 21(1):188-96.
  • [50]Tinel A, Tschopp J: The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004, 304(5672):843-6.
  • [51]Bouchier-Hayes L, Green DR: Caspase-2: the orphan caspase. Cell Death Differ 2012, 19(1):51-7.
  • [52]Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S: Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 2010, 1805(2):123-40.
  • [53]Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al.: Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998, 17(6):1675-87.
  • [54]Kantari C, Walczak H: Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 2011, 1813(4):558-63.
  • [55]Kaufmann T, Strasser A, Jost PJ: Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 2012, 19(1):42-50.
  • [56]Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ: Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 2008, 105(35):12815-9.
  • [57]Sakahira H, Enari M, Nagata S: Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998, 391(6662):96-9.
  • [58]Tsuruta T, Oh-Hashi K, Ueno Y, Kitade Y, Kiuchi K, Hirata Y: RNAi knockdown of caspase-activated DNase inhibits rotenone-induced DNA fragmentation in HeLa cells. Neurochem Int 2007, 50(4):601-6.
  • [59]Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS: Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 2007, 405(1):11-9.
  • [60]Boccellino M, Giuberti G, Quagliuolo L, Marra M, D’Alessandro AM, Fujita H, et al.: Apoptosis induced by interferon-alpha and antagonized by EGF is regulated by caspase-3-mediated cleavage of gelsolin in human epidermoid cancer cells. J Cell Physiol 2004, 201(1):71-83.
  • [61]Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM: Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 1997, 272(42):26159-65.
  • [62]Mandal D, Mazumder A, Das P, Kundu M, Basu J: Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 2005, 280(47):39460-7.
  • [63]Mintzer R, Ramaswamy S, Shah K, Hannoush RN, Pozniak CD, Cohen F, et al.: A whole cell assay to measure caspase-6 activity by detecting cleavage of lamin A/C. PLoS One 2012, 7(1):e30376.
  • [64]Dagenais M, Skeldon A, Saleh M: The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ 2012, 19(1):5-12.
  • [65]Martinon F, Tschopp J: Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007, 14(1):10-22.
  • [66]Vigano E, Mortellaro A: Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol 2013, 43(9):2240-5.
  • [67]Nickles D, Falschlehner C, Metzig M, Boutros M: A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol 2012, 32(17):3372-81.
  • [68]Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD: Caspase-4 is required for activation of inflammasomes. J Immunol 2012, 188(4):1992-2000.
  • [69]Yamamuro A, Kishino T, Ohshima Y, Yoshioka Y, Kimura T, Kasai A, et al.: Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. J Pharmacol Sci 2011, 115(2):239-43.
  • [70]Li C, Wei J, Li Y, He X, Zhou Q, Yan J, et al.: Transmembrane Protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis. J Biol Chem 2013, 288(24):17908-17.
  • [71]Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al.: Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004, 165(3):347-56.
  • [72]Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, et al.: Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991, 173(5):1099-109.
  • [73]Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J: Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003, 112(5):659-72.
  • [74]Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35(4):495-516.
  • [75]Trapani JA: Granzymes, cytotoxic granules and cell death: the early work of Dr. Jurg Tschopp. Cell Death Differ 2012, 19(1):21-7.
  • [76]Chiarugi P, Giannoni E: Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 2008, 76(11):1352-64.
  • [77]Frisch SM, Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol 1997, 9(5):701-6.
  • [78]Ilic D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH: Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 1998, 143(2):547-60.
  • [79]Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric control of cell life and death. Science 1997, 276(5317):1425-8.
  • [80]Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ: Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 2003, 278(21):18811-6.
  • [81]Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E: The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 2000, 11(3):1103-12.
  • [82]Puthalakath H, Villunger A, O’Reilly LA, Beaumont JG, Coultas L, Cheney RE, et al.: Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001, 293(5536):1829-32.
  • [83]Idogawa M, Adachi M, Minami T, Yasui H, Imai K: Overexpression of BAD preferentially augments anoikis. Int J Canc Suppl J Int Canc Suppl 2003, 107(2):215-23.
  • [84]Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al.: Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 2003, 5(8):733-40.
  • [85]Frisch SM: Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol 1999, 9(18):1047-9.
  • [86]Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J: Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 2001, 12(3):147-55.
  • [87]Walker TN, Cimakasky LM, Coleman EM, Madison MN, Hildreth JE: Antibody against integrin lymphocyte function-associated antigen 1 inhibits HIV type 1 infection in primary cells through caspase-8-mediated apoptosis. AIDS Res Hum Retroviruses 2013, 29(2):371-83.
  • [88]Fanucchi S, Veale RB: Delayed caspase-8 activation and enhanced integrin beta1-activated FAK underpins anoikis in oesophageal carcinoma cells harbouring mt p 53–R175H. Cell Biol Int 2011, 35(8):819-26.
  • [89]Lauricella M, Ciraolo A, Carlisi D, Vento R, Tesoriere G: SAHA/TRAIL combination induces detachment and anoikis of MDA-MB231 and MCF-7 breast cancer cells. Biochimie 2012, 94(2):287-99.
  • [90]Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N: Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS One 2007, 2(3):e269.
  • [91]Li HM, Fujikura D, Harada T, Uehara J, Kawai T, Akira S, et al.: IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death Differ 2009, 16(12):1615-21.
  • [92]Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Kaczmarek E, Ponce F, et al.: Death-associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clinical Canc Res 2001, 7(8):2480-9.
  • [93]Wazir U, Jiang WG, Sharma AK, Mokbel K: The mRNA expression of DAP3 in human breast cancer: correlation with clinicopathological parameters. Anticancer Res 2012, 32(2):671-4.
  • [94]Wazir U, Sanders AJ, Wazir AM, Ye L, Jiang WG, Ster IC, et al.: Effects of the knockdown of death-associated protein 3 expression on cell adhesion, growth and migration in breast cancer cells. Oncol Rep 2015, 33(5):2575-82.
  文献评价指标  
  下载次数:5次 浏览次数:32次