期刊论文详细信息
Journal of Biological Engineering
In silico design and in vivo implementation of yeast gene Boolean gates
Mario A Marchisio1 
[1]Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
关键词: Computational design;    Genomic integration;    Yeast;    Boolean gates;    Synthetic biology;   
Others  :  804790
DOI  :  10.1186/1754-1611-8-6
 received in 2013-11-15, accepted in 2014-01-25,  发布年份 2014
PDF
【 摘 要 】

In our previous computational work, we showed that gene digital circuits can be automatically designed in an electronic fashion. This demands, first, a conversion of the truth table into Boolean formulas with the Karnaugh map method and, then, the translation of the Boolean formulas into circuit schemes organized into layers of Boolean gates and Pools of signal carriers. In our framework, gene digital circuits that take up to three different input signals (chemicals) arise from the composition of three kinds of basic Boolean gates, namely YES, NOT, and AND. Here we present a library of YES, NOT, and AND gates realized via plasmidic DNA integration into the yeast genome. Boolean behavior is reproduced via the transcriptional control of a synthetic bipartite promoter that contains sequences of the yeast VPH1 and minimal CYC1 promoters together with operator binding sites for bacterial (i.e. orthogonal) repressor proteins. Moreover, model-driven considerations permitted us to pinpoint a strategy for re-designing gates when a better digital performance is required. Our library of well-characterized Boolean gates is the basis for the assembly of more complex gene digital circuits. As a proof of concepts, we engineered two 2-input OR gates, designed by our software, by combining YES and NOT gates present in our library.

【 授权许可】

   
2014 Marchisio; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708065244857.pdf 1404KB PDF download
Figure 7. 78KB Image download
Figure 6. 21KB Image download
Figure 5. 73KB Image download
Figure 4. 84KB Image download
Figure 3. 56KB Image download
Figure 2. 63KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Benenson Y: Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 2012, 13(7):455-468. [ http://dx.doi.org/10.1038/nrg3197 webcite]
  • [2]Marchisio MA, Rudolf F: Synthetic biosensing systems. Int J Biochem Cell Biol 2011, 43(3):310-319. [ http://dx.doi.org/10.1016/j.biocel.2010.11.012 webcite]
  • [3]Silva-Rocha R, de Lorenzo V: Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett 2008, 582(8):1237-1244. [ http://dx.doi.org/10.1016/j.febslet.2008.01.060 webcite]
  • [4]Anderson JC, Voigt CA, Arkin AP: Environmental signal integration by a modular AND gate. Mol Syst Biol 2007, 3:133. [ http://dx.doi.org/10.1038/msb4100173 webcite]
  • [5]Win MN, Smolke CD: Higher-order cellular information processing with synthetic RNA devices. Science 2008, 322(5900):456-460. [ http://dx.doi.org/10.1126/science.1160311 webcite]
  • [6]Koetter P, Weigand JE, Meyer B, Entian KD, Suess B: A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 2009, 37(18):e120. [ http://dx.doi.org/10.1093/nar/gkp578 webcite]
  • [7]Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y: A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 2007, 25(7):795-801. [ http://dx.doi.org/10.1038/nbt1307 webcite]
  • [8]Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y: Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 2011, 333(6047):1307-1311. [ http://dx.doi.org/10.1126/science.1205527 webcite]
  • [9]Auslaender S, Auslaender D, Mueller M, Wieland M, Fussenegger M: Programmable single-cell mammalian biocomputers. Nature 2012, 487(7405):123-127. [ http://dx.doi.org/10.1038/nature11149 webcite]
  • [10]Regot S, Macia J, Conde N, Furukawa K, Kjellen J, Peeters T, Hohmann S, de Nadal E, Posas F, Sole R: Distributed biological computation with multicellular engineered networks. Nature 2011, 469(7329):207-211. [ http://dx.doi.org/10.1038/nature09679 webcite]
  • [11]Tamsir A, Tabor JJ, Voigt CA: Robust multicellular computing using genetically encoded NOR gates and chemical 'wires’. Nature 2011, 469(7329):212-215. [ http://dx.doi.org/10.1038/nature09565 webcite]
  • [12]Marchisio MA, Stelling J: Automatic design of digital synthetic gene circuits. PLoS Comput Biol 2011, 7(2):e1001083. [ http://dx.doi.org/10.1371/journal.pcbi.1001083 webcite]
  • [13]Karnaugh M: The map method for synthesis of combinational logic circuits. Trans Am Inst Electrical Eng 1953, 72(9):593-599.
  • [14]Marchisio MA, Stelling J: Computational design of synthetic gene circuits with composable parts. Bioinformatics 2008, 24(17):1903-1910. [ http://dx.doi.org/10.1093/bioinformatics/btn330 webcite]
  • [15]Lewin B: genes IX. Sudbury, MA 01776: Jones and Bartlett Publishers; 2008.
  • [16]Millman J, Grabel A: Microelectronics. Burr Ridge, Il 60521: McGraw-Hill College; 1987.
  • [17]Marchisio MA, Stelling J: Simplified computational design of digital synthetic gene circuits. In System Theoretic and Computational Perspectives in Systems and Synthetic Biology (in press). Edited by Stan G-B Kulkarni KR V. Springer-Verlag; 2013.
  • [18]Bongers M: Metabolic response of S. cerevisiae to perturbation of single enzyme abundance. Master’s thesisETH Zurich; 2010
  • [19]Guarente L, Yocum RR, Gifford P: A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci USA 1982, 79(23):7410-7414.
  • [20]Louvion JF, Havaux-Copf B, Picard D: Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 1993, 131:129-134.
  • [21]Blount BA, Weenink T, Ellis T: Construction of synthetic regulatory networks in yeast. FEBS Lett 2012, 586(15):2112-2121. [ http://dx.doi.org/10.1016/j.febslet.2012.01.053 webcite]
  • [22]Marchisio MA, Colaiacovo M, Whitehead E, Stelling J: Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits. BMC Syst Biol 2013, 7:42. [ http://dx.doi.org/10.1186/1752-0509-7-42 webcite] BioMed Central Full Text
  • [23]Rojo F: Repression of transcription initiation in bacteria. J Bacteriol 1999, 181(10):2987-2991.
  • [24]Zhang Z, Dietrich FS: Mapping of transcription start sites in Saccharomyces cerevisiae using 5’ SAGE. Nucleic Acids Res 2005, 33(9):2838-2851. [ http://dx.doi.org/10.1093/nar/gki583 webcite]
  • [25]Li WZ, Sherman F: Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 1991, 11(2):666-676.
  • [26]Faryar K, Gatz C: Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr Genet 1992, 21(4-5):345-349.
  • [27]Kramer BP, Fischer C, Fussenegger M: BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng 2004, 87(4):478-484. [ http://dx.doi.org/10.1002/bit.20142 webcite]
  • [28]Silver PA, Brent R, Ptashne M: DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae. Mol Cell Biol 1986, 6(12):4763-4766.
  • [29]Grilly C, Stricker J, Pang WL, Bennett MR, Hasty J: A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol Syst Biol 2007, 3:127. [ http://dx.doi.org/10.1038/msb4100168 webcite]
  • [30]Murphy KF, Balzsi G, Collins JJ: Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci USA 2007, 104(31):12726-12731. [ http://dx.doi.org/10.1073/pnas.0608451104 webcite]
  • [31]Sheff MA, Thorn KS: Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 2004, 21(8):661-670. [ http://dx.doi.org/10.1002/yea.1130 webcite]
  • [32]Hillen W, Berens C: Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 1994, 48:345-369. [ http://dx.doi.org/10.1146/annurev.mi.48.100194.002021 webcite]
  • [33]Oehler S, Amouyal M, Kolkhof P, von Wilcken-Bergmann B, Mller-Hill B: Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 1994, 13(14):3348-3355.
  • [34]Thliveris AT, Mount DW: Genetic identification of the DNA binding domain of Escherichia coli LexA protein. Proc Natl Acad Sci USA 1992, 89(10):4500-4504.
  • [35]Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R: Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 2005, 15(2):116-124. [ http://dx.doi.org/10.1016/j.gde.2005.02.007 webcite]
  • [36]Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH: Standard biological parts knowledgebase. PLoS One 2011, 6(2):e17005. [ http://dx.doi.org/10.1371/journal.pone.0017005 webcite]
  • [37]Kim KH, Sauro HM: Fan-out in gene regulatory networks. J Biol Eng 2010, 4:16. [ http://dx.doi.org/10.1186/1754-1611-4-16 webcite] BioMed Central Full Text
  • [38]Garg A, Lohmueller JJ, Silver PA, Armel TZ: Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res 2012, 40(15):7584-7595. [ http://dx.doi.org/10.1093/nar/gks404 webcite]
  • [39]Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122:19-27.
  • [40]Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6(5):343-345. [ http://dx.doi.org/10.1038/nmeth.1318 webcite]
  • [41]Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14(2):115-132. [ http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-0061%2819980130%2914:2%3C115::AID-YEA204%3E3.0.CO;2-2/abstract webcite]
  • [42]Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM: Bright far-red fluorescent protein for whole-body imaging. Nat Methods 2007, 4(9):741-746. [ http://dx.doi.org/10.1038/nmeth1083 webcite]
  文献评价指标  
  下载次数:159次 浏览次数:40次