Journal of Neurodevelopmental Disorders | |
Organization of brain networks governed by long-range connections index autistic traits in the general population | |
Mariano Sigman5  Agustín Ibanez3  Facundo Manes4  Ailin Tomio4  Luz Bavassi6  Sebastián Cukier1  Joaquín Ais6  Lucía Amoruso4  Pablo Barttfeld2  | |
[1] Programa Argentino para Niños, Adolescentes y Adultos con Condiciones del Espectro Autista (PANAACEA), Buenos Aires, Argentina;Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale (INSERM), 91191 Gif sur Yvette, France;UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University, Santiago, Chile;Institute of Cognitive Neurology (INECO), Favaloro University, Buenos Aires, Argentina;Universidad Torcuato Di Tella, Almirante Juan Saenz Valiente 1010, Buenos Aires C1428BIJ, Argentina;Physics Department, Laboratory of Integrative Neuroscience, FCEyN UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina | |
关键词: Long-range connections; Small world; Synchronization likelihood; Autistic traits; Electroencephalography; Autism spectrum disorders; | |
Others : 806300 DOI : 10.1186/1866-1955-5-16 |
|
received in 2013-04-02, accepted in 2013-06-14, 发布年份 2013 | |
【 摘 要 】
Background
The dimensional approach to autism spectrum disorder (ASD) considers ASD as the extreme of a dimension traversing through the entire population. We explored the potential utility of electroencephalography (EEG) functional connectivity as a biomarker. We hypothesized that individual differences in autistic traits of typical subjects would involve a long-range connectivity diminution within the delta band.
Methods
Resting-state EEG functional connectivity was measured for 74 neurotypical subjects. All participants also provided a questionnaire (Social Responsiveness Scale, SRS) that was completed by an informant who knows the participant in social settings. We conducted multivariate regression between the SRS score and functional connectivity in all EEG frequency bands. We explored modulations of network graph metrics characterizing the optimality of a network using the SRS score.
Results
Our results show a decay in functional connectivity mainly within the delta and theta bands (the lower part of the EEG spectrum) associated with an increasing number of autistic traits. When inspecting the impact of autistic traits on the global organization of the functional network, we found that the optimal properties of the network are inversely related to the number of autistic traits, suggesting that the autistic dimension, throughout the entire population, modulates the efficiency of functional brain networks.
Conclusions
EEG functional connectivity at low frequencies and its associated network properties may be associated with some autistic traits in the general population.
【 授权许可】
2013 Barttfeld et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708092213570.pdf | 684KB | download | |
Figure 3. | 28KB | Image | download |
Figure 2. | 78KB | Image | download |
Figure 1. | 51KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Kanner L: Autistic disturbances of affective contact. Acta Paedopsychiatr 1968, 35:100-136.
- [2]Hoekstra RA, Bartels M, Verweij CJ, Boomsma DI: Heritability of autistic traits in the general population. Arch Pediatr Adolesc Med 2007, 161:372-377.
- [3]Spiker D, Lotspeich LJ, Dimiceli S, Myers RM, Risch N: Behavioral phenotypic variation in autism multiplex families: evidence for a continuous severity gradient. Am J Med Genet 2002, 114:129-136.
- [4]Baron-Cohen S, Knickmeyer RC, Belmonte MK: Sex differences in the brain: implications for explaining autism. Science 2005, 310:819-823.
- [5]Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30:205-223.
- [6]Lord C, Rutter M, Le Couteur A: Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994, 24:659-685.
- [7]Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W: Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 2003, 33:427-433.
- [8]Constantino JN, Todd RD: Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry 2005, 57:655-660.
- [9]Lau YC, Hinkley LB, Bukshpun P, Strominger ZA, Wakahiro ML, Baron-Cohen S, Allison C, Auyeung B, Jeremy RJ, Nagarajan SS, et al.: Autism traits in individuals with agenesis of the corpus callosum. J Autism Dev Disord 2013, 43:1106-1118.
- [10]Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ: Autism and abnormal development of brain connectivity. J Neurosci 2004, 24:9228-9231.
- [11]Courchesne E, Pierce K: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 2005, 15:225-230.
- [12]Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 2007, 17:951-961.
- [13]Just MA, Cherkassky VL, Keller TA, Minshew NJ: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004, 127:1811-1821.
- [14]Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, et al.: Diffusion tensor imaging of the corpus callosum in Autism. NeuroImage 2007, 34:61-73.
- [15]Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Leiguarda R, Sigman M: State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia 2012, 50:3653-3662.
- [16]Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M: A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 2011, 49:254-263.
- [17]Gallos LK, Sigman M, Makse HA: The conundrum of functional brain networks: small-world efficiency or fractal modularity. Front Physiol 2012, 3:123.
- [18]Schipul SE, Keller TA, Just MA: Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 2011, 5:10.
- [19]Wass S: Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 2011, 75:18-28.
- [20]Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernandez-Espejo D, Pickard JD, Laureys S, Owen AM: Bedside detection of awareness in the vegetative state: a cohort study. Lancet 2011, 378:2088-2094.
- [21]Fox MD, Greicius M: Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010, 4:19.
- [22]Di Martino A, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ, Gotimer K, Klein DF, Castellanos FX, Milham MP: Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 2009, 166:891-899.
- [23]Sporns O, Zwi JD: The small world of the cerebral cortex. Neuroinformatics 2004, 2:145-162.
- [24]Stam CJ, De Haan W, Daffertshofer A, Jones BF, Manshanden I, van Walsum AM VC, Montez T, Verbunt JP, de Munck JC, van Dijk BW, et al.: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 2009, 132:213-224.
- [25]World Health Organization: Schedules for Clinical Assessment in Neuropsychiatry (SCAN). Geneva; 1992.
- [26]Programa Argentino para Niños, Adolescentes y Adultos con Condiciones del Espectro Autista. http://www.panaacea.org webcite
- [27]Montez T, Linkenkaer-Hansen K, van Dijk BW, Stam CJ: Synchronization likelihood with explicit time-frequency priors. NeuroImage 2006, 33:1117-1125.
- [28]Efron B, Tibshirani RJ: An Introduction to the Bootstrap. New York: Chapman and Hall; 1994.
- [29]Miller RG: The jackknife – a review. Biometrika 1974, 61:1-15.
- [30]Zweig MH, Campbell G: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993, 39:561-577.
- [31]Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck1 V, Laufs H: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates. Front Hum Neurosci 2012, 6:339.
- [32]Rubinov M, Sporns O: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 2010, 52:1059-1069.
- [33]Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ networks. Nature 1998, 393:440-442.
- [34]He BJ, Raichle ME: The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 2009, 13:302-309.
- [35]Schroeder CE, Lakatos P: Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 2009, 32:9-18.
- [36]Frith U: Autism: Explaining the Enigma. Oxford: Basil Blackwell; 1989.
- [37]Barabasi AL: Scale-free networks: a decade and beyond. Science 2009, 325:412-413.
- [38]Torralva T, Gleichgerrcht E, Torrente F, Roca M, Strejilevich SA, Cetkovich M, Lischinsky A, Manes F: Neuropsychological functioning in adult bipolar disorder and ADHD patients: a comparative study. Psychiatry Res 2011, 186:261-266.