期刊论文详细信息
Journal of Hematology & Oncology
The Four types of Tregs in malignant lymphomas
Xiao-Yan Ke1  Jing Wang1 
[1] Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, (Huayuan North Road 49#), Beijing (100191), PR China
关键词: prognosis;    regulator T cells;    lymphomas;   
Others  :  826105
DOI  :  10.1186/1756-8722-4-50
 received in 2011-11-16, accepted in 2011-12-09,  发布年份 2011
PDF
【 摘 要 】

Regulatory T cells (Tregs) are a specialized subpopulation of CD4+ T cells, which act to suppress the activation of other immune cells. Tregs represent important modulators for the interaction between lymphomas and host microenvironment. Lymphomas are a group of serious and frequently fatal malignant diseases of lymphocytes. Recent studies revealed that some lymphoma T cells might adopt a Treg profile. Assessment of Treg phenotypes and genotypes in patients may offer prediction of outcome in many types of lymphomas including diffuse large B-cell lymphoma, follicular lymphoma, cutaneous T cell lymphoma, and Hodgkin's lymphoma. Based on characterized roles of Tregs in lymphomas, we can categorize the various roles into four groups: (a) suppressor Tregs; (b) malignant Tregs; (c) direct tumor-killing Tregs; and (d) incompetent Tregs. The classification into four groups is significant in predicting prognosis and designing Tregs-based immunotherapies for treating lymphomas. In patients with lymphomas where Tregs serve either as suppressor Tregs or malignant Tregs, anti-tumor cytotoxicity is suppressed thus decreased numbers of Tregs are associated with a good prognosis. In contrast, in patients with lymphomas where Tregs serve as tumor-killing Tregs and incompetent Tregs, anti-tumor cytotoxicity is enhanced or anti-autoimmune Tregs activities are weakened thus increased numbers of Tregs are associated with a good prognosis and reduced numbers of Tregs are associated with a poor prognosis. However, the mechanisms underlying the various roles of Tregs in patients with lymphomas remain unknown. Therefore, further research is needed in this regard as well as the utility of Tregs as prognostic factors and therapy strategies in different lymphomas.

【 授权许可】

   
2011 Wang and Ke; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713084057658.pdf 369KB PDF download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Mai J, Wang H, Yang XF: Th 17 cells interplay with Foxp3+ Tregs in regulation of inflammation and autoimmunity. Front Biosci 2010, 15:986-1006.
  • [2]Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T: Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001, 182:18-32.
  • [3]Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN: Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001, 31:1122-31.
  • [4]Shevach EM: CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002, 2:389-400.
  • [5]de Jong D: Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol 2005, 23(26):6358-63.
  • [6]Drach J, Seidl S, Kaufmann H: Treatment of mantle cell lymphoma: targeting the microenvironment. Expert Rev Anticancer Ther 2005, 5(3):477-85.
  • [7]Ansell SM, Stenson M, Habermann TM, et al.: CD4+ T-cell immune response to large B-cell non-Hodgkin's lymphoma predicts patient outcome. J Clin Oncol 2001, 19(3):720-6.
  • [8]Sakaguchi S: Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004, 22:531-562.
  • [9]Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L: CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005, 202(8):1075-85.
  • [10]Ralainirina N, Poli A, Michel T, Poos L, Andrès E, Hentges F, Zimmer J: Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol 2007, 81(1):144-53.
  • [11]Ghiringhelli F, Menard C, Martin F, Zitvogel L: The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 2006, 214:229-238.
  • [12]Han S, Huang Y, Liang Y, Ho Y, Wang Y, Chang LJ: Phenotype and functional evaluation of ex vivo generated antigen-specific immune effector cells with potential for therapeutic applications. J Hematol Oncol 2009, 2:34. BioMed Central Full Text
  • [13]Ke X, Wang J, Li L, Chen IH, Wang H, Yang XF: Roles of CD4+CD25(high) FOXP3+ Tregs in lymphomas and tumors are complex. Front Biosci 2008, 13:3986-4001.
  • [14]Yang XF: Factors regulating apoptosis and homeostasis of CD4+ CD25(high) FOXP3+ regulatory T cells are new therapeutic targets. Front Biosci 2008, 13:1472-99.
  • [15]Wu ZL, Song YQ, Shi YF, Zhu J: High nuclear expression of STAT3 is associated with unfavorable prognosis in diffuse large B-cell lymphoma. J Hematol Oncol 2011, 4(1):31. BioMed Central Full Text
  • [16]Kosmaczewska A, Ciszak L, Potoczek S, Frydecka I: The significance of Treg cells in defective tumor immunity. ArchImmunolTherExp (Warsz) 2008, 56(3):181-91.
  • [17]Ansell SM, Stenson M, Habermann TM, Jelinek DF, Witzig TE: CD4+T cell immune responseto large B-cell non-Hodgkin'slymphomapredictspatientoutcome. J Clin Oncol 2001, 19:720-726.
  • [18]Nomura T, Sakaguchi S: Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 2005, 293:287-302.
  • [19]Roncador G, Garcia JF, Garcia JF, Maestre L, Lucas E, Menarguez J, Ohshima K, Nakamura S, Banham AH, Piris MA: FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005, 19(12):2247-53.
  • [20]Clark RA: Regulation gone wrong: a subset of Sézary patients have malignant regulatory T cells. J Invest Dermatol 2009, 129(12):2747-50.
  • [21]Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S: Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 2008, 93(2):193-200.
  • [22]Lee NR, Song EK, Jang KY, Choi HN, Moon WS, Kwon K, Lee JH, Yim CY, Kwak JY: Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma 2008, 49(2):247-56.
  • [23]Bruneau J, Canioni D, Renand A, Marafioti T, Paterson JC, Martin-Garcia N, Gaulard P, Delfau MH, Hermine O, Macintyre E, Brousse N, Asnafi V: Regulatory T-cell depletion in angioimmunoblastic T-cell lymphoma. Am J Pathol 2010, 177(2):570-4.
  • [24]Lin H, Sun XF, Zhen ZJ, Xia Y, Ling JY, Huang HQ, Xia ZJ, Lin TY: Correlation between peripheral blood CD4+CD25high CD127low regulatory T cell and clinical characteristics of patients with non-Hodgkin's lymphoma. Ai Zheng 2009, 28(11):1186-92.
  • [25]Mittal S, Marshall NA, Duncan L, Culligan DJ, Barker RN, Vickers MA: Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 2008, 111(11):5359-70.
  • [26]Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM: Attenuation of CD8(+) T-cell functionby CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer Res 2006, 66:10145-10152.
  • [27]Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH: Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+CD25- and CD4+CD25- T cells. J Immunol 2007, 178:4051-4061.
  • [28]Feng LL, Gao JM, Li PP, Wang X: IL-9 Contributes to Immunosuppression Mediated by Regulatory T Cells and Mast Cells in B-Cell Non-Hodgkin's Lymphoma. J Clin Immunol 2011, 31(6):1084-94.
  • [29]Lindqvist CA, Christiansson LH, Simonsson B, Enblad G, Olsson-Strömberg U, Loskog AS: T regulatory cells control T-cell proliferation partly by the release of soluble CD25 in patients with B-cell malignancies. Immunology 2010, 131(3):371-6.
  • [30]McDonnell TJ, Korsmeyer SJ: Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature 1991, 349:254-256.
  • [31]Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, Miller TP, LeBlanc M, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Connors JM, Lansdorp PM, Ouyang Q, Lister TA, Davies AJ, Norton AJ, Muller-Hermelink HK, Ott G, Campo E, Montserrat E, Wilson WH, Jaffe ES, Simon R, Yang L, Powell J, Zhao H, Goldschmidt N, Chiorazzi M, Staudt LM: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004, 351:2159-2169.
  • [32]Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. The Journal of clinical investigation 2003, 112:1437-43.
  • [33]Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu Y-J, Blazar BR, Chen W: Human Plasmacytoid Dendritic Cells Activated by CpGOligodeoxynucleotides Induce the Generation of CD4+CD25+ Regulatory T Cells. J Immunol 2004, 173:4433-42.
  • [34]Ito T, Yang M, Wang Y-H, Lande R, Gregorio J, Perng OA, Qin X-F, Liu Y-J, Gilliet M: Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 2007, 204:105-15.
  • [35]Yang Z-Z, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM: CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25- T cells. Blood 2007, 110:537-44.
  • [36]Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R: Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T-regulatory cells. Int J Cancer 2009, 124(1):239-44.
  • [37]Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH: High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 2006, 108(9):2957-64.
  • [38]Beltran BE, Morales D, Quinones P, Miranda RN, Goswami M, Castillo JJ: Peripheral T-cell Lymphoma With a Regulatory T-cell Phenotype: Report of a Nodal and an Extranodal Case From Peru. Appl Immuno histochem Mol Morphol 2011, in press.
  • [39]Ishida T, Ueda R: Immunopathogenesis of lymphoma: focus on CCR4. Cancer Sci 2011, 102(1):44-50.
  • [40]Bangham CR, Toulza F: Adult T cell leukemia/lymphoma: FoxP3(+) cells and the cell-mediated immune response to HTLV-1. Adv Cancer Res 2011, 111:163-82.
  • [41]Clark RA: Regulation gone wrong: a subset of Sézary patients have malignant regulatory T cells. J Invest Dermatol 2009, 129(12):2747-50.
  • [42]Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, Ryder LP, Ralfkiaer E: FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 2007, 21(12):2512-8.
  • [43]Knol AC, Quéreux G, Brocard A, Ballanger F, Khammari A, Nguyen JM, Dréno B: Absence of modulation of CD4+CD25 regulatory T cells in CTCL patients treated with bexarotene. ExpDermatol 2010, 19(8):e95-102.
  • [44]Wada DA, Wilcox RA, Weenig RH, Gibson LE: Paucity of intraepidermal FoxP3-positive T cells in cutaneous T-cell lymphoma in contrast with spongiotic and lichenoid dermatitis. J CutanPathol 2010, 37(5):535-41.
  • [45]Heid JB, Schmidt A, Oberle N, Goerdt S, Krammer PH, Suri-Payer E, Klemke CD: FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome. J Invest Dermatol 2009, 129(12):2875-85.
  • [46]Quaglino P, Comessatti A, Ponti R, Peroni A, Mola F, Fierro MT, Savoia P, Novelli M, Bernengo MG: Reciprocal modulation of circulating CD4+CD25+bright T cells induced by extracorporeal photochemotherapy in cutaneous T-cell lymphoma and chronic graft-versus-host-disease patients. Int J Immunopathol Pharmacol 2009, 22(2):353-62.
  • [47]Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S: Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006, 126(10):2217-23.
  • [48]Krejsgaard T, Gjerdrum LM, Ralfkiaer E, Lauenborg B, Eriksen KW, Mathiesen AM, Bovin LF, Gniadecki R, Geisler C, Ryder LP, Zhang Q, Wasik MA, Odum N, Woetmann A: Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia 2008, 22(12):2230-9.
  • [49]Chan JKC, Quintanilla-Martinez L, Ferry JA, Peh SC: Extranodal NK/T-cell lymphoma, nasal type. In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Edited by Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. Lyon, France: IARC Press; 2008:285-288.
  • [50]Peng RJ, Huang ZF, Zhang YL, Yuan ZY, Xia Y, Jiang WQ, Zeng YX, Li J: Circulating and tumor-infiltrating Foxp3+ regulatory T cell subset in Chinese patients with extranodal NK/T cell lymphoma. Int J Biol Sci 2011, 7(7):1027-36.
  • [51]Kim WY, Jeon YK, Kim TM, Kim JE, Kim YA, Lee SH, Kim DW, Heo DS, Kim CW: Increased quantity of tumor-infiltrating FOXP3-positive regulatory T cells is an independent predictor for improved clinical outcome in extranodal NK/T-cell lymphoma. Ann Oncol 2009, 20(10):1688-96.
  • [52]Bonzheim I, Geissinger E, Tinguely M, Roth S, Grieb T, Reimer P, Wilhelm M, Rosenwald A, Müller-Hermelink HK, Rüdiger T: Evaluation of FoxP3 expression in peripheral T-cell lymphoma. Am J ClinPathol 2008, 130(4):613-9.
  • [53]Bruneau J, Canioni D, Renand A, Marafioti T, Paterson JC, Martin-Garcia N, Gaulard P, Delfau MH, Hermine O, Macintyre E, Brousse N, Asnafi V: Regulatory T-cell depletion in angioimmunoblastic T-cell lymphoma. Am J Pathol 2010, 177(2):570-4.
  • [54]Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C, Heike T, Valeyre D, Mathian A, Nakahata T, Yamaguchi T, Nomura T, Ono M, Amoura Z, Gorochov G, Sakaguchi S: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009, 30:899-911.
  • [55]Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ: Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J SurgPathol 2006, 30:802-810.
  • [56]Gjerdrum LM, Woetmann A, Odum N, Hother C, Henrik-Nielsen R, Gniadecki R, Ralfkiaer E: FOXP3 positive regulatory T-cells in cutaneous and systemic CD30 positive T-cell lymphoproliferations. Eur J Haematol 2008, 80(6):483-9.
  • [57]Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA: Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. ProcNatlAcadSci USA 2006, 103:9964-9969.
  • [58]Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, Inagaki H, Ueda R: Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 2006, 66(11):5716-22.
  • [59]Kelley TW, Pohlman B, Elson P, Hsi ED: The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J ClinPathol 2007, 128(6):958-65.
  • [60]Schreck S, Friebel D, Buettner M, Distel L, Grabenbauer G, Young LS, Niedobitek G: Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. HematolOncol 2009, 27(1):31-9.
  • [61]Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR, Kalk E, Piper K, Lee S, Machado L, Hadley K, Sundblad A, Sjoberg J, Bjorkholm M, Porwit AA, Yap LF, Teo S, Grundy RG, Young LS, Ernberg I, Woodman CB, Murray PG: Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin's lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 2008, 173(1):195-204.
  • [62]Lamprecht B, Kreher S, Anagnostopoulos I, Jöhrens K, Monteleone G, Jundt F, Stein H, Janz M, Dörken B, Mathas S: Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3alpha. Blood 2008, 112(8):3339-47.
  • [63]Warncke M, Buchner M, Thaller G, Dodero A, Bulashevska A, Pfeifer D, Timmer J, Veelken H: Control of the specificity of T cell-mediated anti-idiotype immunity by natural regulatory T cells. Cancer Immunol Immunother 2011, 60(1):49-60.
  • [64]Ohkusu-Tsukada K, Toda M, Udono H, Kawakami Y, Takahashi K: Targeted inhibition of IL-10-secreting CD25- Treg via p38 MAPK suppression in cancer immunotherapy. Eur J Immunol 2010, 40(4):1011-21.
  • [65]Galani IE, Wendel M, Stojanovic A, Jesiak M, Müller MM, Schellack C, Suri-Payer E, Cerwenka A: Regulatory T cells control macrophage accumulation and activation in lymphoma. Int J Cancer 2010, 127(5):1131-40.
  • [66]Marshall NA, Culligan DJ, Tighe J, Johnston PW, Barker RN, Vickers MA: The relationships between Epstein-Barr virus latent membrane protein 1 and regulatory T cells in Hodgkin's lymphoma. ExpHematol 2007, 35(4):596-604.
  • [67]Li J, Qian CN, Zeng YX: Regulatory T cells and EBV associated malignancies. Int Immunopharmacol 2009, 9(5):590-2.
  文献评价指标  
  下载次数:8次 浏览次数:3次