期刊论文详细信息
Journal of Hematology & Oncology
Signal transduction inhibitors in treatment of myelodysplastic syndromes
Amit Verma4  Ulrich Steidl1  Ira Braunschweig3  Tatiana Carrillo3  Dale Wyville3  Carolina Schinke1  Ionnis Mantzaris1  Oleg Gligich2  Lohith Bachegowda1 
[1] Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10467, USA;Jacobi Medical Center, 1400 Pelham Pkwy S, New York, NY 10461, USA;Division of Oncology, Montefiore Medical Center, 110, E 210 Street, Bronx, NY 10467, USA;Medicine/Oncology, Developmental & Molecular Biology, 1300 Morris Park Ave, Bronx, NY 10461, USA
关键词: mTOR;    Mek;    ON- 01910.Na;    GSTP 1–1;    FTI;    EGFR;    ALK;    TGF-β;    Cytokines;    Signal transduction inhibitors;    Myelodysplastic syndrome;   
Others  :  804553
DOI  :  10.1186/1756-8722-6-50
 received in 2013-04-30, accepted in 2013-05-29,  发布年份 2013
PDF
【 摘 要 】

Myelodysplastic syndromes (MDS) are a group of hematologic disorders characterized by ineffective hematopoiesis that results in reduced blood counts. Although MDS can transform into leukemia, most of the morbidity experienced by these patients is due to chronically low blood counts. Conventional cytotoxic agents used to treat MDS have yielded some encouraging results but are characterized by many adverse effects in the predominantly elderly patient population. Targeted interventions aimed at reversing the bone marrow failure and increasing the peripheral blood counts would be advantageous in this cohort of patients. Studies have demonstrated over-activated signaling of myelo-suppressive cytokines such as TGF-β, TNF-α and Interferons in MDS hematopoietic stem cells. Targeting these signaling cascades could be potentially therapeutic in MDS. The p38 MAP kinase pathway, which is constitutively activated in MDS, is an example of cytokine stimulated kinase that promotes aberrant apoptosis of stem and progenitor cells in MDS. ARRY-614 and SCIO-469 are p38 MAPK inhibitors that have been used in clinical trials and have shown activity in a subset of MDS patients. TGF-β signaling has been therapeutically targeted by small molecule inhibitor of the TGF-β receptor kinase, LY-2157299, with encouraging preclinical results. Apart from TGF-β receptor kinase inhibition, members of TGF-β super family and BMP ligands have also been targeted by ligand trap compounds like Sotatercept (ACE-011) and ACE-536. The multikinase inhibitor, ON-01910.Na (Rigosertib) has demonstrated early signs of efficacy in reducing the percentage of leukemic blasts and is in advanced stages of clinical testing. Temsirolimus, Deforolimus and other mTOR inhibitors are being tested in clinical trials and have shown preclinical efficacy in CMML. EGF receptor inhibitors, Erlotinib and Gefitinib have shown efficacy in small trials that may be related to off target effects. Cell cycle regulator inhibitors such as Farnesyl transferase inhibitors (Tipifarnib, Lonafarnib) and MEK inhibitor (GSK1120212) have shown acceptable toxicity profiles in small studies and efforts are underway to select mutational subgroups of MDS and AML that may benefit from these inhibitors. Altogether, these studies show that targeting various signal transduction pathways that regulate hematopoiesis offers promising therapeutic potential in this disease. Future studies in combination with high resolution correlative studies will clarify the subgroup specific efficacies of these agents.

【 授权许可】

   
2013 Bachegowda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708063018770.pdf 1652KB PDF download
Figure 4. 81KB Image download
Figure 3. 92KB Image download
Figure 2. 77KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, Kantarjian H, Kuendgen A, Levis A, Malcovati L, Cazzola M, Cermak J, Fonatsch C, Le Beau MM, Slovak ML, Krieger O, Luebbert M, Maciejewski J, Magalhaes SM, Miyazaki Y, Pfeilstocker M, Sekeres M, Sperr WR, Stauder R, Tauro S, Valent P, et al.: Revised International Prognostic Scoring System (IPSS-R) for myelodysplastic syndromes. Blood 2012.
  • [2]Greenberg PL: Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment. Leuk Res 1998, 22:1123-1136.
  • [3]Mundle SD, Reza S, Ali A, Mativi Y, Shetty V, Venugopal P, Gregory SA, Raza A: Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Lett 1999, 140:201-207.
  • [4]Zhou L, Nguyen AN, Sohal D, Ying Ma J, Pahanish P, Gundabolu K, Hayman J, Chubak A, Mo Y, Bhagat TD, Das B, Kapoun AM, Navas TA, Parmar S, Kambhampati S, Pellagatti A, Braunchweig I, Zhang Y, Wickrema A, Medicherla S, Boultwood J, Platanias LC, Higgins LS, List AF, Bitzer M, Verma A: Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood 2008, 112:3434-3443.
  • [5]Savic A, Cemerikic-Martinovic V, Dovat S, Rajic N, Urosevic I, Sekulic B, Kvrgic V, Popovic S: Angiogenesis and survival in patients with myelodysplastic syndrome. Pathol Oncol Res 2012, 18:681-690.
  • [6]Cunha SI, Pietras K: ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 2011, 117:6999-7006.
  • [7]Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L, Matthews K, Chelliah R, Guinn B, Lombardi G, Farzaneh F, Mufti GJ: IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol 2009, 145:64-72.
  • [8]Sharma B, Altman JK, Goussetis DJ, Verma AK, Platanias LC: Protein kinase R as mediator of the effects of interferon (IFN) gamma and tumor necrosis factor (TNF) alpha on normal and dysplastic hematopoiesis. J Biol Chem 2011, 286:27506-27514.
  • [9]Furqan, et al.: Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomarker Research 2013. BioMed Central Full Text
  • [10]Greenberg P: Treatment of myelodysplastic syndrome with agents interfering with inhibitory cytokines. Ann Rheum Dis 2001, 60(Suppl 3):iii41-iii42.
  • [11]Gupta D, Bachegowda L, Phadke G, Boren S, Johnson D, Misra M: Role of plasmapheresis in the management of myeloma kidney: a systematic review. Hemodial Int 2010, 14:355-363.
  • [12]Newman K, Maness-Harris L, El-Hemaidi I, Akhtari M: Revisiting use of growth factors in myelodysplastic syndromes. Asian Pac J Cancer Prev 2012, 13:1081-1091.
  • [13]Verma A, List AF: Cytokine targets in the treatment of myelodysplastic syndromes. Curr Hematol Rep 2005, 4:429-435.
  • [14]Verma A, Deb DK, Sassano A, Kambhampati S, Wickrema A, Uddin S, Mohindru M, Van Besien K, Platanias LC: Cutting edge: activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia. J Immunol 2002, 168:5984-5988.
  • [15]Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC: Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem 2002, 277:7726-7735.
  • [16]Schmierer B, Hill CS: TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007, 8:970-982.
  • [17]Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P, Parmar S, Haghnazari E, Zhou L, Collins R, Kerr I, Nguyen AN, Xu Y, Platanias LC, List AA, Higgins LS, Verma A: Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 2006, 108:4170-4177.
  • [18]Sokol L, Cripe L, Kantarjian H, Sekeres MA, Parmar S, Greenberg P, Goldberg SL, Bhushan V, Shammo J, Hohl R, Verma A, Garcia-Manero G, Li YP, Lowe A, Zhu J, List AF: Randomized, dose-escalation study of the p38alpha MAPK inhibitor SCIO-469 in patients with myelodysplastic syndrome. Leukemia 2012.
  • [19]Keith T, Araki Y, Ohyagi M, Hasegawa M, Yamamoto K, Kurata M, Nakagawa Y, Suzuki K, Kitagawa M: Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 2007, 137:206-215.
  • [20]Cheng CL, Hou HA, Jhuang JY, Lin CW, Chen CY, Tang JL, Chou WC, Tseng MH, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF: High bone marrow angiopoietin-1 expression is an independent poor prognostic factor for survival in patients with myelodysplastic syndromes. Br J Cancer 2011, 105:975-982.
  • [21]Komrokji RS, et al.: Phase 1 Dose- escalation/expansion study of the P38/Tie 2 inhibitor ARRY- 614 in patients with IPSS low-int risk MDS. 2011. ASH Abstract 118. Presented on 12/11/2011, San Diego, California
  • [22]Winski SL, et al.: Role of P38 MAPK and Tie 2 in the pathogenesis of MDS and their inhibition by dual inhibitor ARRY-614. 2012. ASH Abstract 2825. Presented on 12/09/2012 at Atlanta, Georgia
  • [23]Isufi I, Seetharam M, Zhou L, Sohal D, Opalinska J, Pahanish P, Verma A: Transforming growth factor-beta signaling in normal and malignant hematopoiesis. J Interferon Cytokine Res 2007, 27:543-552.
  • [24]Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, Tamari R, Gordon S, Mantzaris I, Jodlowski T, Yu Y, Jing X, Polineni R, Bhatia K, Pellagatti A, Boultwood J, Kambhampati S, Steidl U, Stein C, Ju W, Liu G, Kenny P, List A, Bitzer M, Verma A: miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling. Blood 2013, 121:2875-2881.
  • [25]Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M, Sohal D, Heuck C, Gundabolu K, Ng C, Mo Y, Shen W, Wickrema A, Kong G, Friedman E, Sokol L, Mantzaris I, Pellagatti A, Boultwood J, Platanias LC, Steidl U, Yan L, Yingling JM, Lahn MM, List A, Bitzer M, Verma A: Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res 2011, 71:955-963.
  • [26]Ahnert R, et al.: First human dose (FHD) study of the oral transforming growth factor-beta receptor I kinase inhibitor LY2157299 in patients with treatment refractory malignant glioma. Clin Oncol 2011, 29:[suppl; abstr 3011]. Chicago: ASCO 2011
  • [27]Hedley BD, Allan AL, Xenocostas A: The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin Cancer Res 2011, 17:6373-6380.
  • [28]Sibon D, Cannas G, Baracco F, Prebet T, Vey N, Banos A, Besson C, Corm S, Blanc M, Slama B, Perrier H, Fenaux P, Wattel E, Groupe Francophone des M: Lenalidomide in lower-risk myelodysplastic syndromes with karyotypes other than deletion 5q and refractory to erythropoiesis-stimulating agents. Br J Haematol 2012, 156:619-625.
  • [29]Musto P, Falcone A, Sanpaolo G, Bodenizza C, La Sala A, Perla G, Carella AM: Efficacy of a single, weekly dose of recombinant erythropoietin in myelodysplastic syndromes. Br J Haematol 2003, 122:269-271.
  • [30]Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han JD, Chen YG: MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 2008, 111:588-595.
  • [31]Suragani Rajashekar NVS, et al.: ACE-536, A modified type ii activin receptor increases red blood cells in vivo by promoting maturation of late stage erythroblasts. 2010. ASH Abstract 4236; Presented on 12/06/2010 at Orlando, Florida
  • [32]Lin YW, Slape C, Zhang Z, Aplan PD: NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005, 106:287-295.
  • [33]Suragani RN: RAP-536 Promotes Terminal Erythroid Differentiation and Reduces Anemia in Myelodysplastic Syndromes. 2011. ASH Abstract 610; Presented at San Diego, California on 12/12/2011
  • [34]Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, Fajardo RJ, Kumar R, Underwood KW, Seehra J, Bouxsein ML, Baron R: A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone 2010, 46:1082-1088.
  • [35]Raje N, Vallet S: Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Curr Opin Mol Ther 2010, 12:586-597.
  • [36]Chen N, et al.: Exposures and Erythropoietic Responses to Sotatercept (ACE-011) in Healthy Volunteers and Cancer Patients: Implications for Mechanism of Action. 2012. ASH Abstract 3454; Presented at Atlanta on 12/10/2012
  • [37]Fan A, et al.: A Novel Nano-Immunoassay (NIA) Reveals Inhibition of PI3K and MAPK Pathways in CD34+ Bone Marrow Cells of Patients with Myelodysplastic Syndrome (MDS) Treated with the Multi-Kinase Inhibitor On 01910.Na (Rigosertib). 2011. ASH Abstract 3808; Presented at San Diego, California on 12/12/ 2011
  • [38]Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N, Jiang J, Holland J, Reddy EP: ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005, 7:275-286.
  • [39]Olnes MJ, Shenoy A, Weinstein B, Pfannes L, Loeliger K, Tucker Z, Tian X, Kwak M, Wilhelm F, Yong AS, Maric I, Maniar M, Scheinberg P, Groopman J, Young NS, Sloand EM: Directed therapy for patients with myelodysplastic syndromes (MDS) by suppression of cyclin D1 with ON 01910.Na. Leuk Res 2012, 36:982-989.
  • [40]Raza A, et al.: Final Phase I/II Results of Rigosertib (ON 01910.Na) Hematological Effects in Patients with Myelodysplastic Syndrome and Correlation with Overall Survival. 2011. ASH Abstract 3822, Presented at San Diego, Californiaon 12/12/2011
  • [41]Alvarez M, Roman E, Santos ES, Raez LE: New targets for non-small-cell lung cancer therapy. Expert Rev Anticancer Ther 2007, 7:1423-1437.
  • [42]Follo MY, Mongiorgi S, Bosi C, Cappellini A, Finelli C, Chiarini F, Papa V, Libra M, Martinelli G, Cocco L, Martelli AM: The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 2007, 67:4287-4294.
  • [43]Chen BG, Guo QY, Zhang Y, Yan WH, Pan YQ, Zheng R, Li BL, Luo WD: Effect of rapamycin on apoptosis in human myelodysplastic syndrome cell line MUTZ-1 and its possible mechanisms. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010, 18:300-304.
  • [44]Frost P, Shi Y, Hoang B, Lichtenstein A: AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 2007, 26:2255-2262.
  • [45]Konrad TA, Karger A, Hackl H, Schwarzinger I, Herbacek I, Wieser R: Inducible expression of EVI1 in human myeloid cells causes phenotypes consistent with its role in myelodysplastic syndromes. J Leukoc Biol 2009, 86:813-822.
  • [46]Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, Arai S, Sato T, Shimabe M, Nakagawa M, Imai Y, Kitamura T, Kurokawa M: Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 2011, 117:3617-3628.
  • [47]Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, Rivera VM, Albitar M, Bedrosian CL, Giles FJ: A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2008, 14:2756-2762.
  • [48]Janakiram M, Thirukonda VK, Sullivan M, Petrich AM: Emerging Therapeutic Targets in Diffuse Large B-Cell Lymphoma. Curr Treat Options Oncol 2012.
  • [49]Xu C, Zhou Q, Wu YL: Can EGFR-TKIs be used in first line treatment for advanced non-small cell lung cancer based on selection according to clinical factors? - A literature-based meta-analysis. J Hematol Oncol 2012, 5:62. BioMed Central Full Text
  • [50]Alexander C, Scot R, William T: EGFR inhibition in non-small cell lung cancer: current evidence and future directions. Bio Marker Research 2013. BioMed Central Full Text
  • [51]Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ, Golub TR: Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 2005, 106:2841-2848.
  • [52]Boehrer S: Increased Proliferation Induced by Constitutive Activation of the Src-Kinase Lyn and Aberrant mTOR Signaling in AML Is Abrogated by the EGFR-Inhibitor Erlotinib. 2009. ASH Abstract 3813;Presented at New Orleans on 12/07 2009
  • [53]Boehrer S, Ades L, Braun T, Galluzzi L, Grosjean J, Fabre C, Le Roux G, Gardin C, Martin A, de Botton S, Fenaux P, Kroemer G: Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008, 111:2170-2180.
  • [54]Komrokji RS, et al.: Erlotinib for Treatment of Myelodysplastic Syndromes: A phase II clinical study. 2010. ASH Abstract 1854. Presented at Orlando, Florida on 12/4/2010
  • [55]Lainey E, et al.: Potentiation of Apoptosis in MDS/AML by Combination of Azacitidine and the EGFR-Tyrosine Kinase Inhibitor (TKI) Erlotinib. 2011. ASH Abstract 2790. Presented at San Diego, California on 12/11/2011
  • [56]Lainey E, et al.: Erlotinib Antagonizes Efflux Via ABC Transporters and Decreases P-Gp Cell Surface Expression by Inhibiting SRC Kinase and mTOR Pathways in Acute Myeloid Leukemia (AML). 2011. ASH Abstract 2564; Presented at San Diego on 12/11/2011
  • [57]Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z: Regulation of JNK signaling by GSTp. EMBO J 1999, 18:1321-1334.
  • [58]Galili N, Tamayo P, Botvinnik OB, Mesirov JP, Brooks MR, Brown G, Raza A: Prediction of response to therapy with ezatiostat in lower risk myelodysplastic syndrome. J Hematol Oncol 2012, 5:20. BioMed Central Full Text
  • [59]Raza A, Galili N, Smith SE, Godwin J, Boccia RV, Myint H, Mahadevan D, Mulford D, Rarick M, Brown GL, Schaar D, Faderl S, Komrokji RS, List AF, Sekeres M: A phase 2 randomized multicenter study of 2 extended dosing schedules of oral ezatiostat in low to intermediate-1 risk myelodysplastic syndrome. Cancer 2012, 118:2138-2147.
  • [60]Raza A, Galili N, Callander N, Ochoa L, Piro L, Emanuel P, Williams S, Burris H, Faderl S, Estrov Z, Curtin P, Larson RA, Keck JG, Jones M, Meng L, Brown GL: Phase 1-2a multicenter dose-escalation study of ezatiostat hydrochloride liposomes for injection (Telintra, TLK199), a novel glutathione analog prodrug in patients with myelodysplastic syndrome. J Hematol Oncol 2009, 2:20. BioMed Central Full Text
  • [61]Raza A, Galili N, Mulford D, Smith SE, Brown GL, Steensma DP, Lyons RM, Boccia R, Sekeres MA, Garcia-Manero G, Mesa RA: Phase 1 dose-ranging study of ezatiostat hydrochloride in combination with lenalidomide in patients with non-deletion (5q) low to intermediate-1 risk myelodysplastic syndrome (MDS). J Hematol Oncol 2012, 5:18. BioMed Central Full Text
  • [62]Repasky GA, Chenette EJ, Der CJ: Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 2004, 14:639-647.
  • [63]Reuter CW, Morgan MA, Bergmann L: Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000, 96:1655-1669.
  • [64]Appels NM, Beijnen JH, Schellens JH: Development of farnesyl transferase inhibitors: a review. Oncologist 2005, 10:565-578.
  • [65]Rowinsky EK, Windle JJ, Von Hoff DD: Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol 1999, 17:3631-3652.
  • [66]End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, Devine A, Wouters W, Bowden C: Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 2001, 61:131-137.
  • [67]Kurzrock R, Kantarjian HM, Cortes JE, Singhania N, Thomas DA, Wilson EF, Wright JJ, Freireich EJ, Talpaz M, Sebti SM: Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood 2003, 102:4527-4534.
  • [68]Kurzrock R, Albitar M, Cortes JE, Estey EH, Faderl SH, Garcia-Manero G, Thomas DA, Giles FJ, Ryback ME, Thibault A, De Porre P, Kantarjian HM: Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol 2004, 22:1287-1292.
  • [69]Fenaux P, Raza A, Mufti GJ, Aul C, Germing U, Kantarjian H, Cripe L, Kerstens R, De Porre P, Kurzrock R: A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood 2007, 109:4158-4163.
  • [70]Feldman EJ, Cortes J, DeAngelo DJ, Holyoake T, Simonsson B, O'Brien SG, Reiffers J, Turner AR, Roboz GJ, Lipton JH, Maloisel F, Colombat P, Martinelli G, Nielsen JL, Petersdorf S, Guilhot F, Barker J, Kirschmeier P, Frank E, Statkevich P, Zhu Y, Loechner S, List A: On the use of lonafarnib in myelodysplastic syndrome and chronic myelomonocytic leukemia. Leukemia 2008, 22:1707-1711.
  • [71]Ravoet C, Mineur P, Robin V, Debusscher L, Bosly A, Andre M, El Housni H, Soree A, Bron D, Martiat P: Farnesyl transferase inhibitor (lonafarnib) in patients with myelodysplastic syndrome or secondary acute myeloid leukaemia: a phase II study. Ann Hematol 2008, 87:881-885.
  • [72]Messersmith WA, Hidalgo M, Carducci M, Eckhardt SG: Novel targets in solid tumors: MEK inhibitors. Clin Adv Hematol Oncol 2006, 4:831-836.
  • [73]McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM: Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008, 22:708-722.
  • [74]Sebolt-Leopold JS: MEK inhibitors: a therapeutic approach to targeting the Ras-MAP kinase pathway in tumors. Curr Pharm Des 2004, 10:1907-1914.
  • [75]Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U: Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 2000, 89:384-388.
  • [76]Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M: Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001, 108:851-859.
  • [77]Milella M, Konopleva M, Precupanu CM, Tabe Y, Ricciardi MR, Gregorj C, Collins SJ, Carter BZ, D'Angelo C, Petrucci MT, Foa R, Cognetti F, Tafuri A, Andreeff M: MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 2007, 109:2121-2129.
  • [78]Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K, Braun BS: A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Sci Transl Med 2011, 3:76ra27.
  • [79]Borthakur GLP, Kirschbaum MH, Foran JM, Kadia TM, Jabbour E, Boyiadzis M, Verma A, et al.: Phase I/II trial of the MEK1/2 inhibitor GSK1120212 (GSK212) in patients (pts) with relapsed/refractory myeloid malignancies: Evidence of activity in pts with RAS mutation. 2011. ASCO abstract 6506, presented at ASCO 2011 meeting, Chicago
  • [80]Feldmann M, Maini RN: Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001, 19:163-196.
  • [81]Molnar L, Berki T, Hussain A, Nemeth P, Losonczy H: Detection of TNFalpha expression in the bone marrow and determination of TNFalpha production of peripheral blood mononuclear cells in myelodysplastic syndrome. Pathol Oncol Res 2000, 6:18-23.
  • [82]Deeg HJ, Gotlib J, Beckham C, Dugan K, Holmberg L, Schubert M, Appelbaum F, Greenberg P: Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study. Leukemia 2002, 16:162-164.
  • [83]Raza A, Candoni A, Khan U, Lisak L, Tahir S, Silvestri F, Billmeier J, Alvi MI, Mumtaz M, Gezer S, Venugopal P, Reddy P, Galili N: Remicade as TNF suppressor in patients with myelodysplastic syndromes. Leuk Lymphoma 2004, 45:2099-2104.
  文献评价指标  
  下载次数:0次 浏览次数:7次