期刊论文详细信息
Journal of Translational Medicine
MicroRNA manipulation in colorectal cancer cells: from laboratory to clinical application
James Howard Pringle1  John Stuart Jameson1  Baljit Singh1  Maleene Patel1  Muhammad Imran Aslam1 
[1] Department of Colorectal Surgery, University Hospitals of Leicester Leicester NHS Trusts, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, United Kingdom
关键词: miR-mask;    miRNA-sponges;    MicroRNA;    LNA;    Oligonucleotide;    CRC;    Antisense;   
Others  :  1205953
DOI  :  10.1186/1479-5876-10-128
 received in 2011-10-18, accepted in 2012-02-21,  发布年份 2012
PDF
【 摘 要 】

The development of Colorectal Cancer (CRC) follows a sequential progression from adenoma to the carcinoma. Therefore, opportunities exist to interfere with the natural course of disease development and progression. Dysregulation of microRNAs (miRNAs) in cancer cells indirectly results in higher levels of messenger RNA (mRNA) specific to tumour promoter genes or tumour suppressor genes. This narrative review aims to provide a comprehensive review of the literature about the manipulation of oncogenic or tumour suppressor miRNAs in colorectal cancer cells for the purpose of development of anticancer therapies. A literature search identified studies describing manipulation of miRNAs in colorectal cancer cells in vivo and in vitro. Studies were also included to provide an update on the role of miRNAs in CRC development, progression and diagnosis. Strategy based on restoration of silenced miRNAs or inhibition of over expressed miRNAs has opened a new area of research in cancer therapy. In this review article different techniques for miRNA manipulation are reviewed and their utility for colorectal cancer therapy has been discussed in detail. Restoration of normal equilibrium for cancer related miRNAs can result in inhibition of tumour growth, apoptosis, blocking of invasion, angiogenesis and metastasis. Furthermore, drug resistant cancer cells can be turned into drug sensitive cells on alteration of specific miRNAs in cancer cells. MiRNA modulation in cancer cells holds great potential to replace current anticancer therapies. However, further work is needed on tissue specific delivery systems and strategies to avoid side effects.

【 授权许可】

   
2012 Aslam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150526111958425.pdf 3057KB PDF download
Figure 6 . 108KB Image download
Figure 5 . 114KB Image download
Figure 4 . 95KB Image download
Figure 3 . 92KB Image download
Figure 2 . 59KB Image download
Figure 1 . 77KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

【 参考文献 】
  • [1]Ferlay J, Shin HR, Bray F, et al.: GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. http://globocan.iarc.fr/factsheet.asp webcite
  • [2]Coleman M, Estève J, Damiecki P, Arslan A, Renard H: Trends in Cancer Incidence and Mortality, IARC Scientific Publications. IARC, Lyon; 1993.
  • [3]Ferlay J, Parkin DM, Steliarova-Foucher E: Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010, 46(4):765-781.
  • [4]Marchand L: Combined influence of genetic and dietary factors on colorectal cancer incidence in Japanese Americans. J Natl Cancer Inst Monogr 1999, 26:101-105.
  • [5]Howlader N, Noone AM, Krapcho M, et al.: SEER Cancer Statistics Review, 1975–2008, National Cancer Institute. http://seer.cancer.gov/csr/1975_2008/ webcite
  • [6]Bray F, Atkin W: International cancer patterns in men: geographical and temporal variations in cancer risk and the role of gender. JMHG 2004, 1(1):38-46.
  • [7]Vogelstein B, Fearon ER, Hamilton SR, et al.: Genetic alterations during colorectal- tumor development. N Engl J Med 1988, 319(9):525-532.
  • [8]Lee RC, Feinbaum RL, The AV: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
  • [9]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [10]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [11]Lee Y, Ahn C, Han J, et al.: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
  • [12]Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10:185-191.
  • [13]Thimmaiah P, et al.: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
  • [14]Hammond S, Bernstein E, Beach D, et al.: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293-296.
  • [15]Friedman RC, Farh KK, Burge CB: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
  • [16]Ørom UA, Nielsen FN, Lund AH: MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008, 4:460-471.
  • [17]Eiring A, et al.: miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 2010, 140:652-665.
  • [18]Khraiwesh B, et al.: Transcriptional control of gene expression by microRNAs. Cell 2010, 140:112-122.
  • [19]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6(4):259-269.
  • [20]Huang Q, Gumireddy K, Schrier M, et al.: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008, 10(2):202-210.
  • [21]Zhang BG, Li JF, Yu BQ, et al.: microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 2012, 27(4):1019-1026.
  • [22]Lee DY, Deng Z, Wang CH, et al.: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 2007, 104(51):20350-20355.
  • [23]Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell 1990, 61:759-767.
  • [24]Salby O, Svoboda M, Michalek J, et al.: MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 2009, 14:8-102.
  • [25]Segditsas S, Tomlinson I: Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006, 25(57):7531-7537.
  • [26]Nagel R, le Sage C, Diosdado B, Waal M: Oude Vrielink JA, Bolijn A, Meijer GA, Agami R: Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 2008, 68:5795-5802.
  • [27]Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006, 29:903-906.
  • [28]Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY: Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009, 28:1385-1392.
  • [29]Tsang WP, Kwok TT: The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 2009, 30:953-959.
  • [30]Krichevsky AM, Gabriely G: miR-21: a small multi-faceted RNA. J Cell Mol Med 2009, 13:39-53.
  • [31]Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K: The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 2008, 47:939-946.
  • [32]Chang TC, Wentzel EA, Kent OA, et al.: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007, 26(5):745-752.
  • [33]Diosdado B, van de Wiel MA, Terhaar Sive Droste JS: MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 2009, 101(4):707-714.
  • [34]Spring KJ, Zhao ZZ, Karamatic R, et al.: High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 2006, 131(5):1400-1407.
  • [35]Casey G, Lindor NM, Papadopoulos N, et al.: Colon Cancer Family Registry. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA 2005, 293(7):799-809.
  • [36]Michael MZ, O' Connor SM, van Holst Pellekaan NG, et al.: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003, 12(1):882-891.
  • [37]Volinia S, Calin GA, Liu CG, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103(7):2257-2261.
  • [38]Bandrés E, Cubedo E, Agirre X, et al.: Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006, 5:29.
  • [39]Akao Y, Nakagawa Y, Naoe T: MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 2006, 16(4):845-850.
  • [40]Nakajima G, Hayashi K, Xi Y, et al.: Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are Associated with hemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics 2006, 3(5):317-324.
  • [41]Lanza G, Ferracin M, Gafà R, et al.: mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 2007, 6:54. BioMed Central Full Text
  • [42]Rossi L, Bonmassar E, Faraoni I: Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 2007, 56(3):248-253.
  • [43]Monzo M, Navarro A, Bandres E, et al.: Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res 2008, 18(8):823-833.
  • [44]Schepeler T, Reinert JT, Ostenfeld MS, et al.: Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 2008, 68(15):6416-6424.
  • [45]Schetter AJ, Leung SY, Sohn JJ, et al.: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008, 299(4):425-436.
  • [46]Arndt GM, Dossey L, Cullen LM, et al.: Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 2009, 9:374. BioMed Central Full Text
  • [47]Slattery ML, Wolff E, Hoffman MD, et al.: MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer 2011, 50(3):196-206.
  • [48]Xi Y, Formentini A, Chien M, et al.: Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights 2006, 2:113-121.
  • [49]Slaby O, Svoboda M, Fabian P, et al.: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007, 72(5–6):397-402.
  • [50]Chen X, Ba Y, Ma L, et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18(10):997-1006.
  • [51]Pu XX, Huang GL, Guo HQ, et al.: Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 2010, 25(10):1674-1680.
  • [52]Cheng H, Zhang L, Cogdell DE, et al.: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 2011, 6(3):e17745.
  • [53]Ng EK, Chong WW, Jin H, et al.: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009, 58(10):1375-1381.
  • [54]Huang Z, Huang D, Ni S, et al.: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010, 127(1):118-126.
  • [55]Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008, 110(1):13-21.
  • [56]Dias N, Stein CA: Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 2002, 1(5):347-355.
  • [57]Weiler J, Hunziker J, Hall J: Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 2006, 13(6):496-502.
  • [58]Hutvágner G, Simard MJ, Mello CC, et al.: Sequence-specific inhibition of small RNA function. PLoS Biol 2004, 2(4):E98.
  • [59]Mott JL, Kobayashi S, Bronk SF, et al.: mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007, 26(42):6133-6140.
  • [60]Cimmino A, Calin GA, Fabbri M, et al.: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005, 102(39):13944-13949.
  • [61]Chai H, Liu M, Tian R, et al.: miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin (Shanghai) 2011, 43(3):217-225.
  • [62]Asangani IA, Rasheed SA, Nikolova DA, et al.: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27(15):2128-2136.
  • [63]Wang CJ, Stratmann J, Zhou ZG, et al.: Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 2010, 10:616. BioMed Central Full Text
  • [64]Huang Z, Huang S, Wang Q, et al.: MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res 2011, 71(7):2582-2589.
  • [65]Tsang WP, Ng EK, Ng SS, et al.: Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010, 31(3):350-358.
  • [66]Veedu RN, Wengel J: Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 2010, 7(3):536-542.
  • [67]Valeri N, Gasparini P, Braconi C, et al.: MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 2010, 107(49):21098-21103.
  • [68]Kauppinen S, Vester B, Wengel J: Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb Exp Pharmacol 2006, 173:405-422.
  • [69]Ebert MS, Neilson JR, Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4(9):721-726.
  • [70]Xiao J, Yang B, Lin H, et al.: Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 2007, 212(2):285-292.
  • [71]Choi WY, Giraldez AJ, Schier AF: Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 2007, 318(5848):271-274.
  • [72]Gumireddy K, Young DD, Xiong X, et al.: Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 2008, 47(39):7482-7484.
  • [73]Soussi T, Béroud C: Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001, 1:233-240.
  • [74]Soussi T, Asselain B, Hamroun D, et al.: Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 2006, 12(1):62-69.
  • [75]Akao Y, Noguchi S, Iio A, et al.: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 2011, 300(2):197-204.
  • [76]Mudduluru G, Ceppi P, Kumarswamy R, et al.: Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011, 30(25):2888-99.
  • [77]Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ 2010, 17:193-199.
  • [78]Cole KA, Attiyeh EF, Mosse YP, et al.: A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 2008, 6:735-742.
  • [79]Ng EK, Tsang WP, Ng SS, et al.: MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 2009, 101(4):699-706.
  • [80]Nakagawa Y, Iinuma M, Naoe T, et al.: Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem 2007, 15(16):5620-5628.
  • [81]Hu G, Chen D, Li X, et al.: miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 2010, 10(2):190-197.
  • [82]Li LN, Zhang HD, Zhi R, et al.: Down-regulation of some miRNAs by degrading their precursors contributes to anti-cancer effect of mistletoe lectin-I. Br J Pharmacol 2011, 162(2):349-364.
  • [83]Liu M, Lang N, Qiu M, et al.: miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer 2011, 128(6):1269-1279.
  • [84]Zhang J, Guo H, Zhang H, et al.: Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer 2011, 117(1):86-95.
  • [85]Shi B, Sepp-Lorenzino L, Prisco M, et al.: Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 2007, 282(45):32582-32590.
  • [86]Liu M, Lang N, Chen X, et al.: miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 2011, 301(2):151-160.
  • [87]Boni V, Bitarte N, Cristobal I, et al.: miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther 2010, 9(8):2265-2275.
  • [88]Liu L, Chen L, Xu Y, et al.: microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 2010, 400(2):236-240.
  • [89]Schimanski CC, Frerichs K, Rahman F, et al.: High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 2009, 15(17):2089-2096.
  • [90]Nakano H, Miyazawa T, Kinoshita K, et al.: Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer 2010, 127(5):1072-1080.
  • [91]Kumar MS, Lu J, Mercer KL, et al.: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007, 39(5):673-677.
  • [92]Merritt WM, Lin YG, Han LY, et al.: Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008, 359(25):2641-2650.
  • [93]Karube Y, Tanaka H, Osada H, et al.: Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005, 96(2):111-115.
  • [94]Chiosea S, Jelezcova E, Chandran U, et al.: Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 2007, 67(5):2345-2350.
  • [95]Gupta PB, Chaffer CL, Weinberg RA: Cancer stem cells: mirage or reality? Nat Med 2009, 15(9):1010-1012.
  • [96]Matsui W, Wang Q, Barber JP, et al.: Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008, 68(1):190-197.
  • [97]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8(10):755-768.
  • [98]Gangaraju VK, Lin H: MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009, 10(2):116-125.
  • [99]Zhu R, Yang Y, Tian Y, et al.: Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells. PLoS One 2012, 7(2):e32170.
  • [100]Wang Y, Medvid R, Melton C, et al.: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self renewal. Nat Genet 2007, 39:380-385.
  • [101]Kanellopoulou C, Muljo SA, Kung AL, et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes 2005, 19(4):489-501.
  • [102]Calabrese JM, Seila AC, Yeo GW, et al.: RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci USA 2004, 104(46):18097-18102.
  文献评价指标  
  下载次数:13次 浏览次数:11次