| Journal of Neuroinflammation | |
| Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease | |
| Brian J Balin1  Susan T Hingley1  Christine J Hammond1  Charles Lim1  | |
| [1] Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia 19131, PA, USA | |
| 关键词: Gene expression; Alzheimer’s disease; Innate immunity; Inflammation; Chlamydia pneumoniae; | |
| Others : 1133408 DOI : 10.1186/s12974-014-0217-0 |
|
| received in 2014-08-07, accepted in 2014-12-07, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which infection with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular respiratory pathogen that may enter the central nervous system (CNS) following infection and trafficking of monocytes through the blood-brain barrier. Following this entry, these cells may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD brain, which have been thought to contribute to AD neurodegeneration. The objectives of this work were: (i) to determine if Cpn infection influences monocyte gene transcript expression at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are produced and secreted from these cells over 24 to 120 hours post-infection.
Methods
Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity microarray with 84 genes organized into 5 functional categories: inflammatory response, host defense against bacteria, antibacterial humoral response, septic shock, and cytokines, chemokines and their receptors. Statistical analysis of the results was performed using the Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical analysis with ANOVA.
Results
When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater expression, and no gene expression was found to be down-regulated. Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection.
Conclusions
Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 human monocytes promotes an innate immune response and suggests a potential role in the initiation of inflammation in sporadic/late-onset Alzheimer’s disease.
【 授权许可】
2014 Lim et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150304144930906.pdf | 687KB | ||
| Figure 5. | 12KB | Image | |
| Figure 4. | 14KB | Image | |
| Figure 3. | 17KB | Image | |
| Figure 2. | 16KB | Image | |
| Figure 1. | 16KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Balin BJ, Gerard HC, Arking EJ, Appelt DM, Branigan PJ, Abrams JT, Whittum-Hudson JA, Hudson AP: Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 1998, 187(1):23-42.
- [2]Gerard HC, Dreses-Werringloer U, Wildt KS, Deka S, Oszust C, Balin BJ, Frey WH 2nd, Bordayo EZ, Whittum-Hudson JA, Hudson AP: Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 2006, 48(3):355-366.
- [3]Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ: Immunohistological detection of Chlamydia pneumoniae in the Alzheimer’s disease brain. BMC Neurosci 2010, 11:121. BioMed Central Full Text
- [4]MacIntyre A, Abramov R, Hammond CJ, Hudson AP, Arking EJ, Little CS, Appelt DM, Balin BJ: Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J Neurosci Res 2003, 71(5):740-750.
- [5]MacIntyre A, Hammond CJ, Little CS, Appelt DM, Balin BJ: Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells. FEMS Microbiol Lett 2002, 217(2):167-172.
- [6]Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiappelli F, Bernard G: Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2005, 7(3):221-232. discussion 255–62
- [7]Fiala M, Cribbs DH, Rosenthal M, Bernard G: Phagocytosis of amyloid-beta and inflammation: two faces of innate immunity in Alzheimer’s disease. J Alzheimers Dis 2007, 11(4):457-463.
- [8]Saresella M, Marventano I, Calabrese E, Piancone F, Rainone V, Gatti A, Alberoni M, Nemni R, Clerici M: A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J Alzheimers Dis 2014, 38(2):403-413.
- [9]Feng Y, Li L, Sun XH: Monocytes and Alzheimer’s disease. Neurosci Bull 2011, 27(2):115-122.
- [10]Ringheim GE, Conant K: Neurodegenerative disease and the neuroimmune axis (Alzheimer’s and Parkinson’s disease, and viral infections). J Neuroimmunol 2004, 147(1–2):43-49.
- [11]Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE: Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 1998, 8(1):65-72.
- [12]Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N: A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010, 68(10):930-941.
- [13]McGeer PL, McGeer EG: Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002, 8(6):529-538.
- [14]McGeer EG, McGeer PL: Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 2010, 19(1):355-361.
- [15]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21(3):383-421.
- [16]Rogers J, Lue LF: Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 2001, 39(5–6):333-340.
- [17]Saez TE, Pehar M, Vargas M, Barbeito L, Maccioni RB: Astrocytic nitric oxide triggers tau hyperphosphorylation in hippocampal neurons. In Vivo 2004, 18(3):275-280.
- [18]Lue LF, Walker DG, Rogers J: Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 2001, 22(6):945-956.
- [19]Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19(8):312-318.
- [20]Frautschy SA, Cole GM, Baird A: Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. Am J Pathol 1992, 140(6):1389-1399.
- [21]Frackowiak J, Wisniewski HM, Wegiel J, Merz GS, Iqbal K, Wang KC: Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils. Acta Neuropathol 1992, 84(3):225-233.
- [22]Bitting L, Naidu A, Cordell B, Murphy GM Jr: Beta-amyloid peptide secretion by a microglial cell line is induced by beta-amyloid-(25–35) and lipopolysaccharide. J Biol Chem 1996, 271(27):16084-16089.
- [23]Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B: How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 2004, 3(4):169-176.
- [24]Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y, Rogers J: Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 2001, 35(1):72-79.
- [25]Benveniste EN, Nguyen VT, O’Keefe GM: Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem Int 2001, 39(5–6):381-391.
- [26]Dickson DW: The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997, 56(4):321-339.
- [27]Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG: Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience 2000, 96(1):195-203.
- [28]Benzing WC, Wujek JR, Ward EK, Shaffer D, Ashe KH, Younkin SG, Brunden KR: Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 1999, 20(6):581-589.
- [29]Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A: Amyloid beta peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons. J Neurosci 1996, 16(23):7533-7539.
- [30]Smits HA, Rijsmus A, van Loon JH, Wat JW, Verhoef J, Boven LA, Nottet HS: Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol 2002, 127(1–2):160-168.
- [31]Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ: Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 2004, 25(5):619-627.
- [32]Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K: Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging 2006, 27(2):228-236.
- [33]SABiosciences, a QIAGEN company [http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php]
- [34]Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gerard HC, Hudson AP: Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease. J Alzheimers Dis 2008, 13(4):371-380.
- [35]Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang YX, Anderson DJ, Fierer J, Stephens RS, Kagnoff MF: Secretion of proinflammatory cytokines by epithelial cells in response to chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 1997, 99(1):77-87.
- [36]Boelen E, Steinbusch HW, van der Ven AJ, Grauls G, Bruggeman CA, Stassen FR: Chlamydia pneumoniae infection of brain cells: an in vitro study. Neurobiol Aging 2007, 28(4):524-532.
- [37]Carratelli CR, Paolillo R, Rizzo A: Chlamydia pneumoniae stimulates the proliferation of HUVEC through the induction of VEGF by THP-1. Int Immunopharmacol 2007, 7(3):287-294.
- [38]Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC: Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 1996, 64(5):1614-1620.
- [39]Haranaga S, Yamaguchi H, Friedman H, Izumi S, Yamamoto Y: Chlamydia pneumoniae infects and multiplies in lymphocytes in vitro. Infect Immun 2001, 69(12):7753-7759.
- [40]Gieffers J, van Zandbergen G, Rupp J, Sayk F, Kruger S, Ehlers S, Solbach W, Maass M: Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J 2004, 23(4):506-510.
- [41]Koskiniemi M, Gencay M, Salonen O, Puolakkainen M, Farkkila M, Saikku P, Vaheri A: Chlamydia pneumoniae associated with central nervous system infections. Eur Neurol 1996, 36(3):160-163.
- [42]Little CS, Hammond CJ, MacIntyre A, Balin BJ, Appelt DM: Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 2004, 25(4):419-429.
- [43]Boman J, Soderberg S, Forsberg J, Birgander LS, Allard A, Persson K, Jidell E, Kumlin U, Juto P, Waldenstrom A, Wadell G: High prevalence of Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors. J Infect Dis 1998, 178(1):274-277.
- [44]Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C: Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 1989, 86(19):7611-7615.
- [45]Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WS: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 1996, 17(597047429):761-766.
- [46]Mrak RE, Griffin WS: Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging 2001, 22(6):903-908.
- [47]Serou MJ, DeCoster MA, Bazan NG: Interleukin-1 beta activates expression of cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 expression. J Neurosci Res 1999, 58(4):593-598.
- [48]Griffin WS, Sheng JG, Gentleman SM, Graham DI, Mrak RE, Roberts GW: Microglial interleukin-1 alpha expression in human head injury: correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neurosci Lett 1994, 176(2):133-136.
- [49]Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202(1–2):17-20.
- [50]Cacabelos R, Barquero M, Garcia P, Alvarez XA, de Varela SE: Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find Exp Clin Pharmacol 1991, 13(7):455-458.
- [51]Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB: Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 2004, 295(1):245-257.
- [52]Gadient RA, Otten UH: Interleukin-6 (IL-6) - a molecule with both beneficial and destructive potentials. Prog Neurobiol 1997, 52(5):379-390.
- [53]Meylan E, Tschopp J, Karin M: Intracellular pattern recognition receptors in the host response. Nature 2006, 442(7098):39-44.
- [54]Hollox EJ, Armour JA, Barber JC: Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 2003, 73(3):591-600.
- [55]Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD: The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010, 5(3):e9505.
- [56]Rosenstiel P, Sina C, End C, Renner M, Lyer S, Till A, Hellmig S, Nikolaus S, Folsch UR, Helmke B, Autschbach F, Schirmacher P, Kioschis P, Hafner M, Poustka A, Mollenhauer J, Schreiber S: Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol 2007, 178(12):8203-8211.
- [57]Shukla SD, Paul A, Klachko DM: Hypersensitivity of diabetic human platelets to platelet activating factor. Thromb Res 1992, 66(2–3):239-246.
- [58]Schroder K, Tschopp J: The inflammasomes. Cell 2010, 140(6):821-832.
- [59]Pereira MS, Morgantetti GF, Massis LM, Horta CV, Hori JI, Zamboni DS: Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 2011, 187(12):6447-6455.
- [60]Masters SL, O’Neill LA: Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 2011, 17(5):276-282.
- [61]Chakraborty S, Kaushik DK, Gupta M, Basu A: Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 2010, 88(8):1615-1631.
- [62]Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G: The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009, 10(3):241-247.
- [63]Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC: The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001, 276(36):33293-33296.
- [64]Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC: An overview of the serpin superfamily. Genome Biol 2006, 7(5):216. BioMed Central Full Text
- [65]Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C: The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010, 224(1–2):93-100.
- [66]Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, Guidi I, Blankenstein MA, Bresolin N, Scarpini E: Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 2006, 63(4):538-543.
- [67]Fiala M, Zhang L, Gan X, Sherry B, Taub D, Graves MC, Hama S, Way D, Weinand M, Witte M, Lorton D, Kuo YM, Roher AE: Amyloid-beta induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med 1998, 4(7):480-489.
- [68]Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T: Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 2005, 166(5):1475-1485.
PDF