| Journal of Hematology & Oncology | |
| Targeting Wnt pathway in mantle cell lymphoma-initiating cells | |
| Felipe Samaniego1  Sattva S. Neelapu1  Luis Fayad1  M. Alma Rodriguez1  Michael Wang1  Jorge Romaguerra1  Zuzana Berkova1  Frank K. Braun1  Lalit Sehgal1  Rohit Mathur1  | |
| [1] Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston 77030, TX, USA | |
| 关键词: PKF118-310; iCRT14; CCT036477; MCL co-culture; Mesenchymal stromal cells; FZD1; Wnt3; Burton tyrosine kinase; Tumor stem cells; Lymphoma-initiating cells; | |
| Others : 1217372 DOI : 10.1186/s13045-015-0161-1 |
|
| received in 2015-02-16, accepted in 2015-05-25, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Mantle cell lymphoma (MCL) is an aggressive and incurable form of non-Hodgkin’s lymphoma. Despite initial intense chemotherapy, up to 50 % of cases of MCL relapse often in a chemoresistant form. We hypothesized that the recently identified MCL-initiating cells (MCL-ICs) are the main reason for relapse and chemoresistance of MCL. Cancer stem cell-related pathways such as Wnt could be responsible for their maintenance and survival.
Methods
We isolated MCL-ICs from primary MCL cells on the basis of a defined marker expression pattern (CD34-CD3-CD45+CD19-) and investigated Wnt pathway expression. We also tested the potential of Wnt pathway inhibitors in elimination of MCL-ICs.
Results
We showed that MCL-ICs are resistant to genotoxic agents vincristine, doxorubicin, and the newly approved Burton tyrosine kinase (BTK) inhibitor ibrutinib. We confirmed the differential up-regulation of Wnt pathway in MCL-ICs. Indeed, MCL-ICs were particularly sensitive to Wnt pathway inhibitors. Targeting β-catenin-TCF4 interaction with CCT036477, iCRT14, or PKF118-310 preferentially eliminated the MCL-ICs.
Conclusions
Our results suggest that Wnt signaling is critical for the maintenance and survival of MCL-ICs, and effective MCL therapy should aim to eliminate MCL-ICs through Wnt signaling inhibitors.
【 授权许可】
2015 Mathur et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150706091506388.pdf | 2999KB | ||
| Fig. 5. | 60KB | Image | |
| Fig. 4. | 41KB | Image | |
| Fig. 3. | 56KB | Image | |
| Fig. 2. | 63KB | Image | |
| Fig. 1. | 58KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Leonard JP, Schattner EJ, Coleman M. Biology and management of mantle cell lymphoma. Curr Opin Oncol. 2001; 13(5):342-7.
- [2]Chandran R, Gardiner SK, Simon M, Spurgeon SE. Survival trends in mantle cell lymphoma in the United States over 16 years 1992-2007. Leuk Lymphoma. 2012; 53(8):1488-93.
- [3]Vose JM. Mantle cell lymphoma: 2013 Update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2013; 88(12):1082-8.
- [4]Prichard M, Harris T, Williams ME, Densmore JJ. Treatment strategies for relapsed and refractory aggressive non-Hodgkin’s lymphoma. Expert Opin Pharmacother. 2009; 10(6):983-95.
- [5]Zaja F, Federico M, Vitolo U, Zinzani PL. Management of relapsed/refractory mantle cell lymphoma: a review of current therapeutic strategies. Leuk Lymphoma. 2013; 55(5):988-98.
- [6]Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006; 355(12):1253-61.
- [7]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414(6859):105-11.
- [8]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al.. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994; 367(6464):645-8.
- [9]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3(7):730-7.
- [10]Ratajczak M, Tarnowski M, Staniszewska M, Sroczynski T, Banach B. Mechanisms of cancer metastasis: involvement of cancer stem cells? Minerva Med. 2010; 101(3):179-91.
- [11]Besancon R, Valsesia-Wittmann S, Puisieux A, Caron de Fromentel C, Maguer-Satta V. Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem. 2009; 16(4):394-416.
- [12]Gelebart P, Anand M, Armanious H, Peters AC, Dien Bard J, Amin HM et al.. Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood. 2008; 112(13):5171-9.
- [13]Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A et al.. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: gene expression analysis. Int J Oncol. 2013; 43(2):457-68.
- [14]Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al.. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol. 2005; 130(4):516-26.
- [15]Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010; 21(8):855-63.
- [16]Ge X, Wang X. Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol. 2010; 3:33. BioMed Central Full Text
- [17]Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013; 13(1):11-26.
- [18]Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997; 16(13):3797-804.
- [19]Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al.. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996; 382(6592):638-42.
- [20]Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012; 4(5):1-13.
- [21]Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20:781-810.
- [22]Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005; 58(3):225-36.
- [23]Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002; 3:101-28.
- [24]Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011; 8(2):97-106.
- [25]Chen Z, Ayala P, Wang M, Fayad L, Katz RL, Romaguera J et al.. Prospective isolation of clonogenic mantle cell lymphoma-initiating cells. Stem Cell Res. 2010; 5(3):212-25.
- [26]Medina DJ, Abass-Shereef J, Walton K, Goodell L, Aviv H, Strair RK et al.. Cobblestone-area forming cells derived from patients with mantle cell lymphoma are enriched for CD133+ tumor-initiating cells. PLoS One. 2014; 9(4): Article ID e91042
- [27]Jung HJ, Chen Z, McCarty N. Stem-like tumor cells confer drug resistant properties to mantle cell lymphoma. Leuk Lymphoma. 2011; 52(6):1066-79.
- [28]Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al.. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013; 369(6):507-16.
- [29]James RG, Biechele TL, Conrad WH, Camp ND, Fass DM, Major MB et al.. Bruton’s tyrosine kinase revealed as a negative regulator of Wnt-beta-catenin signaling. Sci Signal. 2009; 2(72):ra25.
- [30]Bhat RA, Stauffer B, Della Pietra A, Bodine PV. Wnt3-frizzled 1 chimera as a model to study canonical Wnt signaling. J Cell Biochem. 2010; 109(5):876-84.
- [31]Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors. 2005; 23(2):111-6.
- [32]Kokolus K, Nemeth MJ. Non-canonical Wnt signaling pathways in hematopoiesis. Immunol Res. 2010; 46(1–3):155-64.
- [33]Golan T, Yaniv A, Bafico A, Liu G, Gazit A. The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade. J Biol Chem. 2004; 279(15):14879-88.
- [34]Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007; 7(10):750-62.
- [35]Li JY, Gaillard F, Moreau A, Harousseau JL, Laboisse C, Milpied N et al.. Detection of translocation t (11;14) (q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol. 1999; 154(5):1449-52.
- [36]Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A et al.. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005; 106(13):4315-21.
- [37]Wlodarska I, Dierickx D, Vanhentenrijk V, Van Roosbroeck K, Pospisilova H, Minnei F et al.. Translocations targeting CCND2, CCND3, and MYCN do occur in t (11;14)-negative mantle cell lymphomas. Blood. 2008; 111(12):5683-90.
- [38]Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM et al.. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood. 2010; 116(16):2975-83.
- [39]Nakashima N, Liu D, Huang CL, Ueno M, Zhang X, Yokomise H. Wnt3 gene expression promotes tumor progression in non-small cell lung cancer. Lung Cancer. 2012; 76(2):228-34.
- [40]Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al.. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20(5):847-56.
- [41]Cole AM, Myant K, Reed KR, Ridgway RA, Athineos D, Van den Brink GR et al.. Cyclin D2-cyclin-dependent kinase 4/6 is required for efficient proliferation and tumorigenesis following Apc loss. Cancer Res. 2010; 70(20):8149-58.
- [42]Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X et al.. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A. 2007; 104(15):6247-52.
- [43]Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell. 2004; 6(5):497-506.
- [44]Koneczny I, Schulenburg A, Hudec X, Knofler M, Holzmann K, Piazza G et al.. Autocrine fibroblast growth factor 18 signaling mediates Wnt-dependent stimulation of CD44-positive human colorectal adenoma cells. Molecular Carcinogenesis. 2014.
- [45]Zhang H, Zhang X, Wu X, Li W, Su P, Cheng H et al.. Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/beta-catenin pathway. Cancer Lett. 2012; 323(1):106-13.
- [46]Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D et al.. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene. 2009; 28(23):2245-56.
- [47]Gazit A, Yaniv A, Bafico A, Pramila T, Igarashi M, Kitajewski J et al.. Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response. Oncogene. 1999; 18(44):5959-66.
- [48]Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, Ehlers S et al.. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J. 2010; 24(11):4599-612.
- [49]Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008; 22(17):2308-41.
- [50]Andrade AC, Nilsson O, Barnes KM, Baron J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone. 2007; 40(5):1361-9.
- [51]Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G et al.. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 2013; 25(5):1086-95.
- [52]Sehgal L, Mathur R, Braun FK, Wise JF, Berkova Z, Neelapu S et al.. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 2014; 28:2376-87.
- [53]Medina DJ, Goodell L, Glod J, Gelinas C, Rabson AB, Strair RK. Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor kappaB pathways. Haematologica. 2012; 97(8):1255-63.
- [54]Mathur R, Chandna S, Kapoor PN, Dwarakanath BS. Peptidyl prolyl isomerase, Pin1 is a potential target for enhancing the therapeutic efficacy of etoposide. Cur Cancer Drug Targets. 2011; 11(3):380-92.
- [55]Jacob J, Briscoe J. Gli proteins and the control of spinal-cord patterning. EMBO Rep. 2003; 4(8):761-5.
- [56]Persson M, Stamataki D, te Welscher P, Andersson E, Bose J, Ruther U et al.. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 2002; 16(22):2865-78.
PDF