期刊论文详细信息
Journal of Hematology & Oncology
Targeting Wnt pathway in mantle cell lymphoma-initiating cells
Felipe Samaniego1  Sattva S. Neelapu1  Luis Fayad1  M. Alma Rodriguez1  Michael Wang1  Jorge Romaguerra1  Zuzana Berkova1  Frank K. Braun1  Lalit Sehgal1  Rohit Mathur1 
[1] Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston 77030, TX, USA
关键词: PKF118-310;    iCRT14;    CCT036477;    MCL co-culture;    Mesenchymal stromal cells;    FZD1;    Wnt3;    Burton tyrosine kinase;    Tumor stem cells;    Lymphoma-initiating cells;   
Others  :  1217372
DOI  :  10.1186/s13045-015-0161-1
 received in 2015-02-16, accepted in 2015-05-25,  发布年份 2015
PDF
【 摘 要 】

Background

Mantle cell lymphoma (MCL) is an aggressive and incurable form of non-Hodgkin’s lymphoma. Despite initial intense chemotherapy, up to 50 % of cases of MCL relapse often in a chemoresistant form. We hypothesized that the recently identified MCL-initiating cells (MCL-ICs) are the main reason for relapse and chemoresistance of MCL. Cancer stem cell-related pathways such as Wnt could be responsible for their maintenance and survival.

Methods

We isolated MCL-ICs from primary MCL cells on the basis of a defined marker expression pattern (CD34-CD3-CD45+CD19-) and investigated Wnt pathway expression. We also tested the potential of Wnt pathway inhibitors in elimination of MCL-ICs.

Results

We showed that MCL-ICs are resistant to genotoxic agents vincristine, doxorubicin, and the newly approved Burton tyrosine kinase (BTK) inhibitor ibrutinib. We confirmed the differential up-regulation of Wnt pathway in MCL-ICs. Indeed, MCL-ICs were particularly sensitive to Wnt pathway inhibitors. Targeting β-catenin-TCF4 interaction with CCT036477, iCRT14, or PKF118-310 preferentially eliminated the MCL-ICs.

Conclusions

Our results suggest that Wnt signaling is critical for the maintenance and survival of MCL-ICs, and effective MCL therapy should aim to eliminate MCL-ICs through Wnt signaling inhibitors.

【 授权许可】

   
2015 Mathur et al.

【 预 览 】
附件列表
Files Size Format View
20150706091506388.pdf 2999KB PDF download
Fig. 5. 60KB Image download
Fig. 4. 41KB Image download
Fig. 3. 56KB Image download
Fig. 2. 63KB Image download
Fig. 1. 58KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Leonard JP, Schattner EJ, Coleman M. Biology and management of mantle cell lymphoma. Curr Opin Oncol. 2001; 13(5):342-7.
  • [2]Chandran R, Gardiner SK, Simon M, Spurgeon SE. Survival trends in mantle cell lymphoma in the United States over 16 years 1992-2007. Leuk Lymphoma. 2012; 53(8):1488-93.
  • [3]Vose JM. Mantle cell lymphoma: 2013 Update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2013; 88(12):1082-8.
  • [4]Prichard M, Harris T, Williams ME, Densmore JJ. Treatment strategies for relapsed and refractory aggressive non-Hodgkin’s lymphoma. Expert Opin Pharmacother. 2009; 10(6):983-95.
  • [5]Zaja F, Federico M, Vitolo U, Zinzani PL. Management of relapsed/refractory mantle cell lymphoma: a review of current therapeutic strategies. Leuk Lymphoma. 2013; 55(5):988-98.
  • [6]Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006; 355(12):1253-61.
  • [7]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414(6859):105-11.
  • [8]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al.. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994; 367(6464):645-8.
  • [9]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3(7):730-7.
  • [10]Ratajczak M, Tarnowski M, Staniszewska M, Sroczynski T, Banach B. Mechanisms of cancer metastasis: involvement of cancer stem cells? Minerva Med. 2010; 101(3):179-91.
  • [11]Besancon R, Valsesia-Wittmann S, Puisieux A, Caron de Fromentel C, Maguer-Satta V. Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem. 2009; 16(4):394-416.
  • [12]Gelebart P, Anand M, Armanious H, Peters AC, Dien Bard J, Amin HM et al.. Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood. 2008; 112(13):5171-9.
  • [13]Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A et al.. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: gene expression analysis. Int J Oncol. 2013; 43(2):457-68.
  • [14]Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al.. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol. 2005; 130(4):516-26.
  • [15]Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010; 21(8):855-63.
  • [16]Ge X, Wang X. Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol. 2010; 3:33. BioMed Central Full Text
  • [17]Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013; 13(1):11-26.
  • [18]Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997; 16(13):3797-804.
  • [19]Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al.. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996; 382(6592):638-42.
  • [20]Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012; 4(5):1-13.
  • [21]Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20:781-810.
  • [22]Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005; 58(3):225-36.
  • [23]Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002; 3:101-28.
  • [24]Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011; 8(2):97-106.
  • [25]Chen Z, Ayala P, Wang M, Fayad L, Katz RL, Romaguera J et al.. Prospective isolation of clonogenic mantle cell lymphoma-initiating cells. Stem Cell Res. 2010; 5(3):212-25.
  • [26]Medina DJ, Abass-Shereef J, Walton K, Goodell L, Aviv H, Strair RK et al.. Cobblestone-area forming cells derived from patients with mantle cell lymphoma are enriched for CD133+ tumor-initiating cells. PLoS One. 2014; 9(4): Article ID e91042
  • [27]Jung HJ, Chen Z, McCarty N. Stem-like tumor cells confer drug resistant properties to mantle cell lymphoma. Leuk Lymphoma. 2011; 52(6):1066-79.
  • [28]Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al.. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013; 369(6):507-16.
  • [29]James RG, Biechele TL, Conrad WH, Camp ND, Fass DM, Major MB et al.. Bruton’s tyrosine kinase revealed as a negative regulator of Wnt-beta-catenin signaling. Sci Signal. 2009; 2(72):ra25.
  • [30]Bhat RA, Stauffer B, Della Pietra A, Bodine PV. Wnt3-frizzled 1 chimera as a model to study canonical Wnt signaling. J Cell Biochem. 2010; 109(5):876-84.
  • [31]Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors. 2005; 23(2):111-6.
  • [32]Kokolus K, Nemeth MJ. Non-canonical Wnt signaling pathways in hematopoiesis. Immunol Res. 2010; 46(1–3):155-64.
  • [33]Golan T, Yaniv A, Bafico A, Liu G, Gazit A. The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade. J Biol Chem. 2004; 279(15):14879-88.
  • [34]Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007; 7(10):750-62.
  • [35]Li JY, Gaillard F, Moreau A, Harousseau JL, Laboisse C, Milpied N et al.. Detection of translocation t (11;14) (q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol. 1999; 154(5):1449-52.
  • [36]Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A et al.. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005; 106(13):4315-21.
  • [37]Wlodarska I, Dierickx D, Vanhentenrijk V, Van Roosbroeck K, Pospisilova H, Minnei F et al.. Translocations targeting CCND2, CCND3, and MYCN do occur in t (11;14)-negative mantle cell lymphomas. Blood. 2008; 111(12):5683-90.
  • [38]Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM et al.. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood. 2010; 116(16):2975-83.
  • [39]Nakashima N, Liu D, Huang CL, Ueno M, Zhang X, Yokomise H. Wnt3 gene expression promotes tumor progression in non-small cell lung cancer. Lung Cancer. 2012; 76(2):228-34.
  • [40]Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al.. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20(5):847-56.
  • [41]Cole AM, Myant K, Reed KR, Ridgway RA, Athineos D, Van den Brink GR et al.. Cyclin D2-cyclin-dependent kinase 4/6 is required for efficient proliferation and tumorigenesis following Apc loss. Cancer Res. 2010; 70(20):8149-58.
  • [42]Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X et al.. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A. 2007; 104(15):6247-52.
  • [43]Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell. 2004; 6(5):497-506.
  • [44]Koneczny I, Schulenburg A, Hudec X, Knofler M, Holzmann K, Piazza G et al.. Autocrine fibroblast growth factor 18 signaling mediates Wnt-dependent stimulation of CD44-positive human colorectal adenoma cells. Molecular Carcinogenesis. 2014.
  • [45]Zhang H, Zhang X, Wu X, Li W, Su P, Cheng H et al.. Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/beta-catenin pathway. Cancer Lett. 2012; 323(1):106-13.
  • [46]Flahaut M, Meier R, Coulon A, Nardou KA, Niggli FK, Martinet D et al.. The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway. Oncogene. 2009; 28(23):2245-56.
  • [47]Gazit A, Yaniv A, Bafico A, Pramila T, Igarashi M, Kitajewski J et al.. Human frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional response. Oncogene. 1999; 18(44):5959-66.
  • [48]Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, Ehlers S et al.. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J. 2010; 24(11):4599-612.
  • [49]Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008; 22(17):2308-41.
  • [50]Andrade AC, Nilsson O, Barnes KM, Baron J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone. 2007; 40(5):1361-9.
  • [51]Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G et al.. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 2013; 25(5):1086-95.
  • [52]Sehgal L, Mathur R, Braun FK, Wise JF, Berkova Z, Neelapu S et al.. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 2014; 28:2376-87.
  • [53]Medina DJ, Goodell L, Glod J, Gelinas C, Rabson AB, Strair RK. Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor kappaB pathways. Haematologica. 2012; 97(8):1255-63.
  • [54]Mathur R, Chandna S, Kapoor PN, Dwarakanath BS. Peptidyl prolyl isomerase, Pin1 is a potential target for enhancing the therapeutic efficacy of etoposide. Cur Cancer Drug Targets. 2011; 11(3):380-92.
  • [55]Jacob J, Briscoe J. Gli proteins and the control of spinal-cord patterning. EMBO Rep. 2003; 4(8):761-5.
  • [56]Persson M, Stamataki D, te Welscher P, Andersson E, Bose J, Ruther U et al.. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 2002; 16(22):2865-78.
  文献评价指标  
  下载次数:7次 浏览次数:1次