期刊论文详细信息
GigaScience
High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps
Guojie Zhang8  Stephen D. Sarre9  Jennifer A. Marshall Graves2  Paul Waters1  Kazumi Matsubara9  Xiuwen Zhang9  Yang Zhou4  Clare E. Holleley9  Hardip R. Patel3  Matthew Fujita5  Pei Zhang4  Zongji Wang6  Janine Deakin9  Denis O’Meally9  Jinmin Lian4  Qiye Li7  Arthur Georges9 
[1] School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia;School of Life Science, La Trobe University, Melbourne 3086, VIC, Australia;John Curtin School of Medical Research, Australian National University, Canberra 2601, ACT, Australia;China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China;Department of Biology, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington 76019, TX, USA;School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China;Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350, Denmark;Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark;Institute for Applied Ecology, University of Canberra, Canberra 2601, ACT, Australia
关键词: Agamidae, Squamata, Next-generation sequencing;    Central bearded dragon;    Dragon lizard;    Pogona vitticeps;   
Others  :  1228423
DOI  :  10.1186/s13742-015-0085-2
 received in 2015-06-20, accepted in 2015-09-14,  发布年份 2015
PDF
【 摘 要 】

Background

The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps.

Findings

The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete.

Conclusions

The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

【 授权许可】

   
2015 Georges et al.

【 预 览 】
附件列表
Files Size Format View
20151016040226298.pdf 2790KB PDF download
Fig. 5. 60KB Image download
Fig. 4. 70KB Image download
Fig. 3. 36KB Image download
Fig. 2. 27KB Image download
Fig. 1. 14KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Young MJ, O’Meally D, Sarre SD, Georges A, Ezaz T. Molecular cytogenetic map of the central bearded dragon Pogona vitticeps (Squamata: Agamidae). Chromosom Res. 2013; 21:361-74.
  • [2]Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Graves JAM. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosom Res. 2005; 13:763-76.
  • [3]Holleley CE, O’Meally D, Sarre SD, Graves JAM, Ezaz T, Matsubara K et al.. Sex reversal triggers the rapid transition from genetic to temperature dependent sex. Nature. 2015; 523:79-82.
  • [4]Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM. Temperature sex reversal implies sex gene dosage in a reptile. Science. 2007; 316:411.
  • [5]MacCulloch RD, Upton DE, Murphy RW. Trends in nuclear DNA content among amphibians and reptiles. Comp Biochem Physiol. 1996; 113B:601-5.
  • [6]Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003; 51A:127-8.
  • [7]Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011; 27:764-70.
  • [8]Li R, Fan W, Tian G, Zhu H, He L, Cai J et al.. The sequence and de novo assembly of the giant panda genome. Nature. 2010; 463:311-7.
  • [9]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z et al.. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010; 20:265-72.
  • [10]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25:1754-60.
  • [11]Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007; 23:1061-7.
  • [12]Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I et al.. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011; 29:644-52.
  • [13]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110:462-7.
  • [14]Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0 1996–2010. Institute for Systems Biology, Seattle, WA, USA. 1996. http://www.repeatmasker.org. Accessed 20-Dec-14 2014.
  • [15]Smit AFA, Hubley R. RepeatModeler Open-1.0. 2008–2015. . Institute for Systems Biology, Seattle, WA, USA. 2008. http://www.repeatmasker.org. Accessed 20-Dec-2014 2014.
  • [16]Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007; 35:W265-8.
  • [17]Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999; 27:573-80.
  • [18]Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004; 14:988-95.
  • [19]Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003; 19 Suppl. 2:215-25.
  • [20]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25:1105-11.
  • [21]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al.. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28:511-5.
  • [22]Ezaz T, Moritz B, Waters PD, Graves JAM, Georges A, Sarre SD. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosom Res. 2009; 17:965-73.
  • [23]Quinn AE, Ezaz T, Sarre SD, Graves JAM, Georges A. Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard. Pogona vitticeps Heredity. 2010; 104:410-7.
  • [24]Ezaz T, Azad B, O’Meally D, Young MJ, Matsubara K, Edwards MJ et al.. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin1. BMC Genomics. 2013; 14:899. BioMed Central Full Text
  • [25]Alfoldi J, di Palma F, Grabherr M, Williams C, Kong L, Mauceli E et al.. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011; 477:587-91.
  • [26]Castoe T, de Koning A, Hall K, Card D, Schield D, Fujita M et al.. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013; 110:20645-50.
  • [27]Vonk F, Casewell N, Henkel C, Heimberg A, Jansen H, McCleary R et al.. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013; 110:20651-6.
  • [28]Shaffer H, Minx P, Warren D, Shedlock A, Thomson R, Valenzuela N et al.. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013; 14:R28. BioMed Central Full Text
  • [29]Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z et al.. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013; 45:701-6.
  • [30]St John J, Braun E, Isberg S, Miles L, Chong A, Gongora J et al.. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 2012; 13:415. BioMed Central Full Text
  • [31]Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB et al.. The dog genome: survey sequencing and comparative analysis. Science. 2003; 301:1898-903.
  • [32]Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al.. The genome of the Western clawed frog Xenopus tropicalis. Science. 2010; 328:633-6.
  • [33]Fujita MK, Edwards SV, Ponting CP. The Anolis lizard genome: An amniote genome without isochores. Genome Biol Evol. 2010; 3:974-84.
  • [34]Georges A, Li Q, Lian J, O’Meally D, Deakin J, Wang Z et al.. Genome of the Australian dragon lizard Pogona vitticeps. 2015. GigaScience Database. http://gigadb. org/dataset/100166 webcite
  • [35]Georges A, O’Meally D. The Pogona vitticeps genome browser (pvi1.1 Jan 2013). Institute for Applied Ecology. University of Canberra, Canberra; 2015. https://genomics. canberra.edu.au/. Accessed 1-Sep-2015
  文献评价指标  
  下载次数:37次 浏览次数:2次