Genome Biology | |
Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude | |
Jun Wang1  Yingrui Li2  Longhai Luo2  Jinchao Liu2  Rongjun He2  Xinming Zhang2  Zhaobao Wang2  Songbo Wang2  Jinyang Zhao2  Meirong Hao2  Yue Cai2  Caiyun Gou2  Yuanyuan Hui2  Shengkai Pan2  Jiaohui Xu2  Yadan Luo2  Yongshan Lang2  Xiaoju Qian2  Qingle Cai2  | |
[1] King Abdulaziz University, Abdulla Alsulaiman Road, Jeddah 21589, Saudi Arabia;BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China | |
关键词: phylogeny; high-altitude adaptation; genome; | |
Others : 866869 DOI : 10.1186/gb-2013-14-3-r29 |
|
received in 2012-07-23, accepted in 2013-03-28, 发布年份 2013 | |
【 摘 要 】
Background
The mechanism of high-altitude adaptation has been studied in certain mammals. However, in avian species like the ground tit Pseudopodoces humilis, the adaptation mechanism remains unclear. The phylogeny of the ground tit is also controversial.
Results
Using next generation sequencing technology, we generated and assembled a draft genome sequence of the ground tit. The assembly contained 1.04 Gb of sequence that covered 95.4% of the whole genome and had higher N50 values, at the level of both scaffolds and contigs, than other sequenced avian genomes. About 1.7 million SNPs were detected, 16,998 protein-coding genes were predicted and 7% of the genome was identified as repeat sequences. Comparisons between the ground tit genome and other avian genomes revealed a conserved genome structure and confirmed the phylogeny of ground tit as not belonging to the Corvidae family. Gene family expansion and positively selected gene analysis revealed genes that were related to cardiac function. Our findings contribute to our understanding of the adaptation of this species to extreme environmental living conditions.
Conclusions
Our data and analysis contribute to the study of avian evolutionary history and provide new insights into the adaptation mechanisms to extreme conditions in animals.
【 授权许可】
2013 Cai et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140728062631801.pdf | 450KB | download | |
Figure 1. | 30KB | Image | download |
63KB | Image | download | |
30KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17:32-43.
- [2]Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, et al.: Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010, 329:75-78.
- [3]Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT: Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. PNAS 2010, 107:11459-11464.
- [4]Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, et al.: The yak genome and adaptation to life at high altitude. Nat Genet 2012, 44:946-9.
- [5]Bulgarella M, Peters JL, Kopuchian C, Valqui T, Wilson RE, McCracken KG: Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of crested ducks (Lophonetta specularioides). Mol Ecol 2012, 21:350-68.
- [6]Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Milsom WK: Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol 2011, 28:351-63.
- [7]James HF, Ericson PGP, Sliks B, Lei FM, Gill FB, Olson SL: Pseudopodoces humilis, a misclassified terrestrial tit (Paridae) of the Tibetan Plateau: evolutionary consequences of shifting adaptive zones. Ibis 2003, 145:185-202.
- [8]Zarudny N, Loudon HB: Uber Einteilung des genus Podoces in subgenera. Orn Monatsb 1902, 10:185.
- [9]Hope S: Phylogeny of the avian family Corvidae. PhD thesis. Ann Arbor, MI: City University of New York, University Microfilms #90-00033; 1989.
- [10]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
- [11]Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FC, Zhou Y, Cao J, Sun X, Fu Y, et al.: The sequence and de novo assembly of the giant panda genome. Nature 2010, 463:311-317.
- [12]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967.
- [13]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J: SNP detection for massively parallel whole-genome resequencing. Genome Res 2009, 19:1124-1132.
- [14]Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH: Synteny and Collinearity in Plant Genomes. Science 2008, 320:486-488.
- [15]Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W: Human mouse alignments with BLASTZ. Genome Res 2003, 13:103-107.
- [16]Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W: Aligning multiple genomic sequences with the threaded block set aligner. Genome Res 2004, 14:708-715.
- [17]Chimpanzee Sequencing and Analysis Consortium: Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005, 437:69-87.
- [18]Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J, 1000 Genomes Project, Eichler EE: Diversity of human copy number variation and multicopy genes. Science 2010, 330:641-646.
- [19]Dassanayake M, Oh DH, Hong H, Bohnert HJ, Cheeseman JM: Transcription strength and halophytic lifestyle. Trends Plant Sci 2011, 16:1-3.
- [20]Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM: The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 2011, 43:913-918.
- [21]The Gene Ontology Database [http://www.geneontology.org/] webcite
- [22]Steiger SS, Fidler AE, Valcu M, Kempenaers B: Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?. Proc R Soc B 2008, 275:2309-2317.
- [23]Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg Le Ann, Bouffard P, Burt DW, Crasta O, Crooijmans RP, Cooper K, Coulombe RA, De S, Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P, Florea L, Folkerts O, Groenen MA, Harkins TT, Herrero J, Hoffmann S, Megens HJ, Jiang A, de Jong P, Kaiser P, Kim H, et al.: Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 2010, 8:e1000475.
- [24]The KEGG database [http://www.genome.jp/kegg/] webcite
- [25]Cheviron ZA, Brumfield RT: Genomic insights into adaptation to high-altitude environments. Heredity 2012, 108:354-361.
- [26]Tintu A, Rouwet E, Verlohren S, Brinkmann J, Ahmad S, Crispi F, van Bilsen M, Carmeliet P, Staff AC, Tjwa M, Cetin I, Gratacos E, Hernandez-Andrade E, Hofstra L, Jacobs M, Lamers WH, Morano I, Safak E, Ahmed A, le Noble F: Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLos One 2009, 4:e5155.
- [27]Törn S, Nokelainen P, Kurkela R, Pulkka A, Menjivar M, Ghosh S, Coca-Prados M, Peltoketo H, Isomaa V, Vihko P: Production, purification, and functional analysis of recombinant human and mouse 17beta-hydroxysteroid dehydrogenase type 7. Biochem Biophys Res Commun 2003, 305:37-45.
- [28]Satake H, Kawada T: Overview of the primary structure, tissue-distribution, and functions of tachykinins and their receptors. Current Drug Targets 2006, 7:963-974.
- [29]DeBerardinis RJ, Cheng T: Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 29:313-324.
- [30]Wesley CW, David FC, Hans E, Arthur PA, LaDeana WH, Axel K, Steve S, Simon W, Albert JV, Susan F, Andreas H, Lesheng K, Chris PP, Erich DJ, Claudio VM, Pat M, Peter L, Tarciso AFV, Margaret F, Christopher NB, Saurabh S, Charles B, Sarah EL, LI Y, Lin YC, Julia G, Jonathan S, Bruce S, Preethi G, Michael W, et al.: The genome of a songbird. Nature 2010, 464:757-762.
- [31]Yang Z : Likelihood and Bayes estimation of ancestral population sizes in hominoids using data from multiple loci. Genetics 2002, 162:1811-1823.
- [32]Wingfield JC, Hunt K: Arctic spring: hormone-behavior interactions in a severe environment. Comp Biochem Physiol B 2002, 132:275-286.
- [33]Wingfield JC, Jacobs J, Hillgarth N: Ecological constraints and the evolution of hormone-behavior interrelationships. Ann N Y Acad Sci 1997, 807:22-41.
- [34]Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Fürst DO, Vornwald A, von Hodenberg E, Nürnberg P, Scheffold T, Dietz R, Osterziel KJ: Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 2003, 107:1390-1395.
- [35]She R, Chu JS, Wang K, Pei J, Chen N: GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res 2009, 19:143-149.
- [36]Birney E, Clamp M, Durbin R: GeneWise and Genomewise. Genome Res 2004, 14:988-995.
- [37]Kent WJ: BLAT: the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
- [38]Stanke M, Waack S: Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003, 19:215-225.
- [39]Salamov AA, Solovyev VV: Ab initio gene finding in Drosophila genomic DNA. Genome Res 2000, 10:516-522.
- [40]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogen Genome Res 2005, 110:462-467.
- [41]The Uniprot Database [http://www.uniprot.org/help/uniprotkb] webcite
- [42][http://www.ebi.ac.uk/Tools/pfa/iprscan/] webcite
- [43]Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0.1996-2010. [http://www.repeatmasker.org] webcite
- [44]Smit AFA, Hubley R: RepeatModeler Open-1.0.2008-2010. [http://www.repeatmasker.org] webcite
- [45]Benson G: Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.
- [46][http://www.ensembl.org/index.html] webcite
- [47]Li H, Coghlan A, Ruan J, Coin LJ, Hériché JK, Osmotherly L, Li R, Liu T, Zhang Z, Bolund L, Wong GK, Zheng W, Dehal P, Wang J, Durbin R: TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 2006, 34:D572-580.
- [48]Posada D: jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 2008, 25:1253-1256.
- [49]Huelsenbeck JP , Ronquist F: MRBAYES: Bayesian inference of Phylogenetictree. Bioinformatics 2001, 17:754-755.
- [50]Yang Z: PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol 2007, 24:1586-1591.
- [51][http://www.fossilrecord.net] webcite
- [52]De Bie T, Cristianini N, Demuth JP, Hahn MW: CAFE: a computational tool for the study of gene family evolution. Bioinformatics 2006, 22:1269-1271.
- [53]Penn O, Privman E, Landan G, Graur D, Pupko T: An alignment confidence score capturing robustness to guide-tree uncertainty. Mol Biol Evol 2010, 27:1759-1767.
- [54]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17:32-43.
- [55]Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 2003, 100:11484-11489.
- [56][http://genome.ucsc.edu] webcite