期刊论文详细信息
Head & Face Medicine
An in vitro study of different material properties of Biodentine compared to ProRoot MTA
Till Dammaschke1  Edgar Schäfer2  Markus Kaup1 
[1]Department of Operative Dentistry, Westphalian Wilhelms-University, Albert-Schweitzer-Campus 1, building W 30, Münster, 48149, Germany
[2]Central Interdisciplinary Ambulance in the School of Dentistry, Albert-Schweitzer-Campus 1, building W 30, Münster, 48149, Germany
关键词: Vickers microhardness;    Solubility;    Setting time;    Radiopacity;    Biodentine;   
Others  :  1209177
DOI  :  10.1186/s13005-015-0074-9
 received in 2015-02-02, accepted in 2015-04-24,  发布年份 2015
PDF
【 摘 要 】

Introduction

The aim of this study was to compare solubility, microhardness, radiopacity, and setting time of Biodentine with ProRoot MTA.

Methods

Solubility in distilled water, radioopacity, and setting time were evaluated in accordance with International Standard ISO 6876:2001. In addition, the solubility in Phosphate Buffered Saline (PBS) buffer was determined. For microhardness-testing, ten samples of each cement were produced. All samples were loaded with a diamond indenter point with a weight of 100 g for 30s.

All data were analysed using the Student-t-test.

Results

Both materials fulfilled the requirements of the International Standard ISO 6876:2001 and showed a solubility of <3% after 24 h. At all exposure times Biodentine was significantly more soluble than ProRoot MTA (p < 0.0001). After immersion in PBS-buffer a precipitation of hydroxyapatite was visible.

The Vickers microhardness for Biodentine was significantly higher (62.35 ± 11.55HV) compared with ProRoot MTA (26.93 ± 4.66HV) (p < 0.0001).

ProRoot MTA was significantly more radiopaque (6.40 ± 0.06 mm Al) than Biodentine (1.50 ± 0.10 mm Al) (p < 0.0001).

The setting time for Biodentine (85.66 ± 6.03 min) was significantly lower than for ProRoot MTA (228.33 ± 2.88 min) (p < 0.0001).

Conclusions

Biodentine and ProRoot MTA displayed different material properties. The solubility of both cements was in accordance with the International Standard ISO 6876:2001, whereas ProRoot MTA showed a significantly lower solubility. With regard to microhardness, Biodentine may be used to replace dentine. The radioopacity of Biodentine did not fulfil the requirements laid down in the International Standard ISO 6876:2001. The setting time for ProRoot MTA is significantly higher. Both materials can be used in different indications where specific material properties may be favourable. Hence, the here tested material properties are of clinical relevance.

【 授权许可】

   
2015 Kaup et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150602090154617.pdf 713KB PDF download
Figure 2. 28KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Pitt Ford TR. The constitution of mineral trioxide aggregate. Dent Mater. 2005; 21:297-303.
  • [2]Dammaschke T, Gerth HUV, Züchner H, Schäfer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater. 2005; 21:731-8.
  • [3]Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabé PFE, Dezan JE. Reaction of dogs’ teeth to root canal filling with mineral trioxide aggregate or a glass ionomer sealer. J Endod. 1999; 25:728-30.
  • [4]Faraco Júnior IM, Holland R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent Traumatol. 2001; 17:163-6.
  • [5]Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K et al.. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J. 2006; 39:415-22.
  • [6]Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - Part I: chemical, physical, and antibacterial properties. J Endod. 2010; 36:16-27.
  • [7]Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review - Part II: leakage and biocompatibility investigations. J Endod. 2010; 36:190-202.
  • [8]Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - Part III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010; 36:400-13.
  • [9]Karabucak B, Li D, Lim J, Iqbal M. Vital pulp therapy with mineral trioxide aggregate. Dent Traumatol. 2005; 21:240-3.
  • [10]Stropko JJ. Micro-surgical endodontics. In: Endodontics. Castellucci A, editor. Edizioni Odontoiatriche Il Tridente, Florence; 2009: p.1118-25.
  • [11]Belobrov I, Parashos P. Treatment of tooth discoloration after the use of white mineral trioxide aggregate. J Endod. 2011; 37:1017-20.
  • [12]Dammaschke T. Direct pulp capping. Dentist. 2011; 27(8):88-94.
  • [13]Gutmann JL, Lovedahl PE. Problem-solving challenges in periapical surgery. In: Problem solving in endodontics. 5th ed. Gutmann JL, Lovedahl PE, editors. Elsevier Mosby, Maryland Heights; 2011: p.351.
  • [14]Laurent P, Camps J, de Méo M, Déjou J, About I. Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. Dent Mater. 2008; 24:1486-94.
  • [15]Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995; 21:349-53.
  • [16]International Standard ISO 6876:2001: Dental root canal sealing materials. International Organization for Standardization, Geneva; 2001.
  • [17]Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005; 31:97-100.
  • [18]Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J. Effect of two storage solutions on surface topography of two root-end filling. Aust Endod J. 2008; 35:147-52.
  • [19]Gandolfi MG, van Lunduyt K, Taddei P, Modena E, van Meerbeek B, Prati C. Environmental scanning electron microscopy connected with energy dispersive X-ray analysis and Raman techniques to study ProRoot Mineral Trioxide Aggregate and calcium silicate cements in wet conditions and in real time. J Endod. 2010; 36:851-7.
  • [20]Ryge G, Foley DE, Fairhurst CW. Microindentation hardness. J Dent Res. 1961; 40:1116-26.
  • [21]Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mater Res A. 2003; 66A:850-3.
  • [22]Lai YL, Yang ML, Lee SY. Microhardness and color changes of human dentin with repeated intracoronal bleaching. Oper Dent. 2003; 28:786-92.
  • [23]Manson-Hing LR. An investigation of the roentgenographic contrast of enamel, dentine and aluminium. Oral Surg Oral Med Oral Pathol. 1961; 14:1456-72.
  • [24]Vivan RR, Ordinola-Zapata R, Bramante CM, Bernardineli N, Garcia RB, Hungaro Duarte MA et al.. Evaluation of the radiopacity of some commercial and experimental root-end filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108:e35-8.
  • [25]Shah PMM, Chong BS, Sidhu SK, Pitt Ford TR. Radiopacity of potential root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996; 81:476-9.
  • [26]Persson C, Engqvist H. Premixed calcium silicate cement for endodontic applications: injectability, setting time and radioopacity. Biomatter. 2011; 1:76-80.
  • [27]Santos AD, Araujo EB, Yukimitu K, Barbosa JC, Moraes JC. Setting time and thermal expansion of two endodontic cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106:e77-9.
  • [28]McComb D, Smith DC. Comparison of physical properties of polycarboxylate-based and conventional root canal sealers. J Endod. 1976; 2:228-35.
  • [29]Ørstavik D. Weight loss of endodontic sealers, cements and pastes in water. Scand J Dent Res. 1983; 91:316-9.
  • [30]Kazemi RB, Safavi KE, Spångberg LSW. Dimensional changes of endodontic sealers. Oral Surg Oral Med Oral Pathol. 1993; 76:766-71.
  • [31]Ono K, Matsumoto K. Physical properties of CH61, a newly developed root canal sealer. J Endod. 1998; 24:244-7.
  • [32]Higginbotham TL. A comparative study of the physical properties of five commonly used root canal sealers. Oral Surg Oral Med Oral Pathol. 1967; 24:89-101.
  • [33]Kaplan AE, Goldberg F, Artaza LP, De Silvio A, Macchi RL. Disintegration of endodontic cements in water. J Endod. 1997; 23:439-41.
  • [34]Wilson AD. Specification test for the solubility and disintegration of dental cements: A critical evaluation of its meaning. J Dent Res. 1976; 55:721-9.
  • [35]Caicedo R, von Fraunhofer JA. The properties of endodontic sealer cements. J Endod. 1988; 14:527-34.
  • [36]Danesh G, Dammaschke T, Gerth HUV, Zandbiglari T, Schäfer E. A comparative study of selected properties of ProRoot MTA and two Portland cements. Int Endod J. 2006; 39:213-9.
  • [37]Poggio C, Lombardini M, Alessandro C, Simonetta R. Solubility of root-end-filling materials: a comparative study. J Endod. 2007; 33:1094-7.
  • [38]Shie MY, Huang TH, Kao CT, Huang CH, Ding SJ. The effect of a physiologic solution pH on properties of white mineral trioxide aggregate. J Endod. 2009; 35:98-101.
  • [39]Vivan RR, Ordinola-Zapata R, Zeferino MA, Bramante CM, Bernardineli N, Garcia RB et al.. Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 110:250-6.
  • [40]Borges RP, Sousa-Neto MD, Varsiani MA, Rached-Júnior FA, De-Deus G, Miranda CES et al.. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J. 2012; 45:419-28.
  • [41]Grech L, Mallia B, Camilleri J. Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 2013; 46:632-41.
  • [42]Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013; 46:808-14.
  • [43]Gjorgievska ES, Nicholson JW, Apostolska SM, Coleman NJ, Booth SE, Slipper IJ et al.. Interfacial properties of three different bioactive dentine substitutes. Microsc Microanal. 2013; 19:1450-7.
  • [44]Matt GD, Thorpe JR, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J Endod. 2004; 30:876-9.
  • [45]Lamb EL, Loushine RJ, Weller RN, Kimbrough WF, Pashley DH. Effect of root resection on the apical sealing ability of mineral trioxide aggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95:732-5.
  • [46]Giuliani V, Baccetti T, Pace R, Pagavino G. The use of MTA in teeth with necrotic pulps and open apices. Dent Traumatol. 2002; 18:217-21.
  • [47]Nekoofar MH, Adusei G, Sheykhrezae MS, Hayes SJ, Bryant ST, Dummer PMH. The effect of condensation pressure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2007; 40:453-61.
  • [48]Namazikhah MS, Nekoofra MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST et al.. The effect of pH on the surface hardness and microstructure of mineral trioxide aggregate. Int Endod J. 2008; 41:108-16.
  • [49]Nekoofar MH, Aseeley Z, Dummer PMH. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int Endod J. 2010; 43:312-20.
  • [50]Nekoofar MH, Oloomi K, Sheykhrezae MS, Tabor R, Stone DF, Dummer PMH. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010; 43:849-58.
  • [51]Kang JS, Rhim EM, Huh SY, Ahn SJ, Kim DS, Kim SY et al.. The effects of humidity and serum on the surface microhardness and morphology of five retrograde filling materials. Scanning. 2012; 34:207-14.
  • [52]Pradelle-Plasse N, Tran X-V, Colon P. Physico-chemical properties. In: Biocompatibility or cytotoxic effects of dental composites. Goldberg M, editor. Coxmoor, Oxford; 2009: p.184-94.
  • [53]Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent. 2013; 41:600-10.
  • [54]Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013; 29:e20-8.
  • [55]Laghios CD, Benson BW, Gutmann JL, Cutler CW. Comparative radiopacity of tetracalcium phosphate and other root-end filling materials. Int Endod J. 2000; 33:311-5.
  • [56]Chng HK, Islam I, Yap AUJ, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005; 31:665-8.
  • [57]Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endod. 2006; 32:193-7.
  • [58]Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105:54-7.
  • [59]Camilleri J, Gandolfi MG. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. Int Endod J. 2010; 43:21-30.
  • [60]Cutajar A, Mallia B, Abela S, Camilleri J. Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent Mater. 2011; 27:879-91.
  • [61]Tanalp J, Karapınar-Kazandağ M, Dölekoğlü S, Kayahan MB. Comparison of the radiopacities of different root-end filling and repair materials. ScientificWorldJournal. 2013;594950.
  • [62]Gandolfi MG, Iacono F, Agee K, Siboni F, Tay F, Pashley DH et al.. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108:e39-45.
  • [63]Berzins DW. Chemical properties of MTA. In: Mineral Trioxide Aggregate. Properties and clinical applications. Torabinejad M, editor. Wiley Blackwell, Ames; 2014: p.17-35.
  文献评价指标  
  下载次数:11次 浏览次数:17次