期刊论文详细信息
Journal of Biomedical Science
From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation
Yi-Ping Hsueh1 
[1] Institute of Molecular Biology, Academia Sinica, 128, Sec 2, Academia Rd, Taipei 11529, Taiwan
关键词: VCP/p97.;    statin;    neurofibromin;    Neurofibromatosis Type I;    Neurodevelopmental disorder;    IBMPFD;    Dendritic spine formation;   
Others  :  825396
DOI  :  10.1186/1423-0127-19-33
 received in 2012-03-03, accepted in 2012-03-26,  发布年份 2012
PDF
【 摘 要 】

Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

【 授权许可】

   
2012 Hsueh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713063022982.pdf 377KB PDF download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Harris KM, Stevens JK: Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 1989, 9:2982-2997.
  • [2]Ehninger D, Li W, Fox K, Stryker MP, Silva AJ: Reversing neurodevelopmental disorders in adults. Neuron 2008, 60:950-960.
  • [3]Ramocki MB, Zoghbi HY: Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 2008, 455:912-918.
  • [4]Giusti-Rodriguez P, Gao J, Graff J, Rei D, Soda T, Tsai LH: Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of beta-secretase (BACE1). J Neurosci 2011, 31:15751-15756.
  • [5]Ferreira ST, Klein WL: The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem 2011, 96:529-543.
  • [6]Spires-Jones T, Knafo S: Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2012, 2012:319836.
  • [7]Lin Y-L, Lei Y-T, Hong C-J, Hsueh YP: Syndecan-2 induces filopodia formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol 2007, 177:829-841.
  • [8]Wang HF, Shih YT, Chen CY, Chao HW, Lee MJ, Hsueh YP: Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest 2011, 121:4820-4837.
  • [9]Upadhyaya M: Genetic basis of tumorigenesis in NF1 malignant peripheral nerve sheath tumors. Front Biosci 2011, 16:937-951.
  • [10]Brossier NM, Carroll SL: Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2011. 10.1016/j.brainresbull.2011.08.005 [doi]
  • [11]Haines DS: p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010, 1:753-763.
  • [12]Ralston SH: Pathogenesis of Paget's disease of bone. Bone 2008, 43:819-825.
  • [13]Schindeler A, Little DG: Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone 2008, 42:616-622.
  • [14]Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ: Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 2002, 415:526-530.
  • [15]Hyman SL, Shores A, North KN: The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 2005, 65:1037-1044.
  • [16]Hyman SL, Arthur Shores E, North KN: Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol 2006, 48:973-977.
  • [17]Mbarek O, Marouillat S, Martineau J, Barthelemy C, Muh JP, Andres C: Association study of the NF1 gene and autistic disorder. Am J Med Genet 1999, 88:729-732.
  • [18]Marui T, Hashimoto O, Nanba E, Kato C, Tochigi M, Umekage T, Ishijima M, Kohda K, Kato N, Sasaki T: Association between the neurofibromatosis-1 (NF1) locus and autism in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 2004, 131B:43-47.
  • [19]Kuorilehto T, Poyhonen M, Bloigu R, Heikkinen J, Vaananen K, Peltonen J: Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int 2005, 16:928-936.
  • [20]Easton DF, Ponder MA, Huson SM, Ponder BA: An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 1993, 53:305-313.
  • [21]Szudek J, Birch P, Riccardi VM, Evans DG, Friedman JM: Associations of clinical features in neurofibromatosis 1 (NF1). Genet Epidemiol 2000, 19:429-439.
  • [22]Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R, et al.: The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990, 62:599-608.
  • [23]Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG: Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994, 8:1019-1029.
  • [24]Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA: Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 1994, 7:353-361.
  • [25]Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990, 63:835-841.
  • [26]Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 1990, 63:851-859.
  • [27]Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM, et al.: The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990, 63:843-849.
  • [28]Guo HF, The I, Hannan F, Bernards A, Zhong Y: Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 1997, 276:795-798.
  • [29]Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y: Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet 2006, 15:1087-1098.
  • [30]Hsueh YP: Neurofibromin signaling and synapses. J Biomed Sci 2007, 14:461-466.
  • [31]Guo HF, Tong J, Hannan F, Luo L, Zhong Y: A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 2000, 403:895-898.
  • [32]Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y: Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci 2002, 5:95-96.
  • [33]Kweh F, Zheng M, Kurenova E, Wallace M, Golubovskaya V, Cance WG: Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog 2009, 48:1005-1017.
  • [34]Hsueh YP, Roberts AM, Volta M, Sheng M, Roberts RG: Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci 2001, 21:3764-3770.
  • [35]Lin YL, Hsueh YP: Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochem Biophys Res Commun 2008, 369:747-752.
  • [36]Volta M, Calza S, Roberts AM, Roberts RG: Characterisation of the interaction between syndecan-2, neurofibromin and CASK: dependence of interaction on syndecan dimerization. Biochem Biophys Res Commun 2010, 391:1216-1221.
  • [37]De Schepper S, Boucneau JM, Westbroek W, Mommaas M, Onderwater J, Messiaen L, Naeyaert JM, Lambert JL: Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol 2006, 126:653-659.
  • [38]Feng L, Yunoue S, Tokuo H, Ozawa T, Zhang D, Patrakitkomjorn S, Ichimura T, Saya H, Araki N: PKA phosphorylation and 14-3-3 interaction regulate the function of neurofibromatosis type I tumor suppressor, neurofibromin. FEBS Lett 2004, 557:275-282.
  • [39]Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M, Arimura N, Kaibuchi K, Saya H, Araki N: Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 2008, 283:9399-9413.
  • [40]D'Angelo I, Welti S, Bonneau F, Scheffzek K: A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep 2006, 7:174-179.
  • [41]Welti S, Fraterman S, D'Angelo I, Wilm M, Scheffzek K: The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol 2007, 366:551-562.
  • [42]Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE: Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004, 36:377-381.
  • [43]Weihl CC: Another VCP interactor: NF is enough. J Clin Invest 2011, 121:4627-4630.
  • [44]Weihl CC: Valosin containing protein associated fronto-temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis. Curr Alzheimer Res 2011, 8:252-260.
  • [45]Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurro MR, Battistini S, Salvi F, Spataro R, Sola P: Borghero Get al.: Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010, 68:857-864.
  • [46]Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel AH, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S, Kakizuka A: VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ 2001, 8:977-984.
  • [47]Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD, Taylor JP, Kretzschmar HA, Kimonis VE, Forman MS: TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 2007, 66:152-157.
  • [48]Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, Hanson PI, Kimonis V, Pestronk A: TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 2008, 79:1186-1189.
  • [49]Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J, Tang W, Winton MJ, Neumann M, Trojanowski JQ, Lee VM, Forman MS, Taylor JP: TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 2010, 30:7729-7739.
  • [50]Brunger AT, DeLaBarre B: NSF and p97/VCP: similar at first, different at last. FEBS Lett 2003, 555:126-133.
  • [51]Wang Q, Song C, Li CC: Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 2004, 146:44-57.
  • [52]Rouiller I, DeLaBarre B, May AP, Weis WI, Brunger AT, Milligan RA, Wilson-Kubalek EM: Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat Struct Biol 2002, 9:950-957.
  • [53]Tang WK, Li D, Li CC, Esser L, Dai R, Guo L, Xia D: A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J 2010, 29:2217-2229.
  • [54]Schroder R, Watts GD, Mehta SG, Evert BO, Broich P, Fliessbach K, Pauls K, Hans VH, Kimonis V, Thal DR: Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 2005, 57:457-461.
  • [55]Kimonis VE, Mehta SG, Fulchiero EC, Thomasova D, Pasquali M, Boycott K, Neilan EG, Kartashov A, Forman MS, Tucker S, Kimonis K, Mumm S, Whyte MP, Smith CD, Watts GD: Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A 2008, 146:745-757.
  • [56]Halawani D, LeBlanc AC, Rouiller I, Michnick SW, Servant MJ, Latterich M: Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol Cell Biol 2009, 29:4484-4494.
  • [57]Vij N: AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential. J Cell Mol Med 2008, 12:2511-2518.
  • [58]Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T: Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 2002, 4:134-139.
  • [59]Dreveny I, Kondo H, Uchiyama K, Shaw A, Zhang X, Freemont PS: Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J 2004, 23:1030-1039.
  • [60]Yoshida H: ER stress and diseases. FEBS J 2007, 274:630-658.
  • [61]Uchiyama K, Kondo H: p97/p47-Mediated biogenesis of Golgi and ER. J Biochem 2005, 137:115-119.
  • [62]Ju JS, Weihl CC: p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system. Autophagy 2010, 6:283-285.
  • [63]Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP: VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010, 6:217-227.
  • [64]Meyer H, Bug M, Bremer S: Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012, 14:117-123.
  • [65]Weihl CC, Dalal S, Pestronk A, Hanson PI: Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 2006, 15:189-199.
  • [66]Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC: Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 2009, 187:875-888.
  • [67]Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G: p47 is a cofactor for p97-mediated membrane fusion. Nature 1997, 388:75-78.
  • [68]Otter-Nilsson M, Hendriks R, Pecheur-Huet EI, Hoekstra D, Nilsson T: Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J 1999, 18:2074-2083.
  • [69]Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW: Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 2001, 3:1086-1091.
  • [70]Uchiyama K, Jokitalo E, Kano F, Murata M, Zhang X, Canas B, Newman R, Rabouille C, Pappin D, Freemont P, Kondo H: VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J Cell Biol 2002, 159:855-866.
  • [71]Uchiyama K, Jokitalo E, Lindman M, Jackman M, Kano F, Murata M, Zhang X, Kondo H: The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle. J Cell Biol 2003, 161:1067-1079.
  • [72]Kano F, Kondo H, Yamamoto A, Tanaka AR, Hosokawa N, Nagata K, Murata M: The maintenance of the endoplasmic reticulum network is regulated by p47, a cofactor of p97, through phosphorylation by cdc2 kinase. Genes Cells 2005, 10:333-344.
  • [73]Vedrenne C, Hauri HP: Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 2006, 7:639-646.
  • [74]Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M: Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 2010, 190:965-973.
  • [75]Mizuno Y, Hori S, Kakizuka A, Okamoto K: Vacuole-creating protein in neurodegenerative diseases in humans. Neurosci Lett 2003, 343:77-80.
  • [76]Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, Drachman DA, Jhaveri BS, Karlawish JH, Pestronk A, Smith TW, Tu PH, Watts GD, Markesbery WR, Smith CD, Kimonis VE: Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol 2006, 65:571-581.
  • [77]Rumpf S, Lee SB, Jan LY, Jan YN: Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development 2011, 138:1153-1160.
  • [78]Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ: The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 2005, 15:1961-1967.
  • [79]Mendola CE, Backer JM: Lovastatin blocks N-ras oncogene-induced neuronal differentiation. Cell Growth Differ 1990, 1:499-502.
  • [80]Sebti SM, Tkalcevic GT, Jani JP: Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice. Cancer Commun 1991, 3:141-147.
  • [81]Hering H, Lin CC, Sheng M: Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 2003, 23:3262-3271.
  • [82]Cao J, Wang J, Qi W, Miao HH, Ge L, DeBose-Boyd RA, Tang JJ, Li BL, Song BL: Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 2007, 6:115-128.
  • [83]Leichner GS, Avner R, Harats D, Roitelman J: Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol Biol Cell 2009, 20:3330-3341.
  • [84]Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y, Anderson RG, DeBose-Boyd RA: Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem 2010, 285:19288-19298.
  文献评价指标  
  下载次数:0次 浏览次数:17次